Background: To investigate the expression and clinical significance of zinc finger protein 217 (ZNF217) in human colorectal carcinoma (CRC).

Materials And Methods: The expression of ZNF217 in 60 CRC tissues and matched tumor adjacent tissues, collected between January 2013 and June 2014, was assessed immunohistochemically. The relationship between the expression of ZNF217 and clinicopathlogical features was analyzed by Pearson chi-square test. In addition, siRNA was used to down-regulate the expression of ZNF217 in CRC cells. The effects of ZNF217 for cell migration and invasion were measured by wound healing assay and transwell assay, respectively.

Results: The expression level of ZNF217 was significantly higher in CRC tissues than in tumor adjacent tissues (p<0.05), positively correlating with tumor size, lymphatic metastasis and advanced TNM stage (p<0.05). Down-regulation of ZNF217 in CRC cells could significantly suppress cell migration and invasion.

Conclusions: ZNF217 is overexpressed in colorectal carcinoma tissues and is associated with tumor malignant clinicopathological features. ZNF217 may promote CRC progression by inducing cell migration and invasion.

Download full-text PDF

Source
http://dx.doi.org/10.7314/apjcp.2015.16.6.2459DOI Listing

Publication Analysis

Top Keywords

expression znf217
12
cell migration
8
migration invasion
8
colorectal carcinoma
8
znf217 crc
8
crc tissues
8
tumor adjacent
8
adjacent tissues
8
znf217
7
expression
5

Similar Publications

Background: Acute myeloid leukemia (AML) is an aggressive hematological neoplasm. Little improvement in survival rates has been achieved over the past few decades. Necroptosis has relationship with certain types of malignancies outcomes.

View Article and Find Full Text PDF

The expression of oncogene zinc-finger protein 217 (ZNF217) has been reported to play a central role in cancer development, resistance, and recurrence. Therefore, targeting ZNF217 has been proposed as a possible strategy to fight cancer, and there has been much research on compounds that can target ZNF217. The present work investigates the chemo-preventive properties of cucurbitacin D, a compound with a broad range of anticancer effects, in hematological cancer cells, specifically with regard to its ability to modulate ZNF217 expression.

View Article and Find Full Text PDF

ZNF217 Mediates Transcriptional Activation of GRHL3 to Regulate SLC22A31 and Promote Malignant Progression in Thyroid Cancer.

Mol Biotechnol

October 2024

Department of Ultrasound Medicine, Daqing Oilfield General Hospital, No.9, Zhongkang Street, Daqing, 163000, Heilongjiang, People's Republic of China.

The incidence of thyroid cancer (THCA) has increased worldwide during the past 40 years. However, an understanding of the mechanisms and major transcription factors involved in THCA is insufficient to identify therapeutic targets against THCA. To reveal such mechanisms, we conducted bioinformatics analyses to assess the differential expression in human THCA sample and normal tissue sample, leading us to focus on the function of the ZNF217/GRHL3/ SLC22A31 axis in mediating biological activity in THCA.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) exhibited important roles in Alzheimer's disease (AD). Here, we focused on the dysregulation of hsa_circ_0049472 (circ_0049472) and potential functions in SK-N-SH cells with amyloid-beta peptide (Aβ) treatment in AD.

Methods: RNA expression was detected by real-time quantitative PCR.

View Article and Find Full Text PDF

Unraveling molecular similarities between colorectal polyps and colorectal cancer: a systems biology approach.

Intest Res

April 2024

Department of Biology, School of Sciences, Razi University, Kermanshah, Islamic Republic of Iran.

Background/aims: Colorectal cancer (CRC) and colorectal polyps are intimately linked, with polyps acting as precursors to CRC. Understanding the molecular mechanisms governing their development is crucial for advancing diagnosis and treatment. Employing a systems biology approach, we investigated the molecular similarities between polyp and CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!