Genetic skeletal diseases (GSDs) are an extremely diverse and complex group of rare genetic diseases that primarily affect the development and homeostasis of the osseous skeleton. There are more than 450 unique and well-characterised phenotypes that range in severity from relatively mild to severe and lethal forms. Although individually rare, as a group of related genetic diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. Qualitative defects in cartilage structural proteins result in a broad spectrum of both recessive and dominant GSDs. This review focused on a disease spectrum resulting from mutations in the non-collagenous glycoproteins, cartilage oligomeric matrix protein (COMP) and matrilin-3, which together cause a continuum of phenotypes that are amongst the most common autosomal dominant GSDs. Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) comprise a disease spectrum characterised by varying degrees of disproportionate short stature, joint pain and stiffness and early-onset osteoarthritis. Over the past decade, the generation and deep phenotyping of a range of genetic mouse models of the PSACH and MED disease spectrum has allowed the disease mechanisms to be characterised in detail. Moreover, the generation of novel phenocopies to model specific disease mechanisms has confirmed the importance of endoplasmic reticulum (ER) stress and reduced chondrocyte proliferation as key modulators of growth plate dysplasia and reduced bone growth. Finally, new insight into related musculoskeletal complications (such as myopathy and tendinopathy) has also been gained through the in-depth analysis of targeted mouse models of the PSACH-MED disease spectrum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432922 | PMC |
http://dx.doi.org/10.3892/ijmm.2015.2158 | DOI Listing |
Curr Cardiol Rep
January 2025
Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.
View Article and Find Full Text PDFAutism Res
January 2025
Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China.
Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive.
View Article and Find Full Text PDFMult Scler
January 2025
Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.
Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology/Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China.
Objectives: To study the clinical manifestations and genetic characteristics of children with maturity-onset diabetes of the young type 2 (MODY2), aiming to enhance the recognition of MODY2 in clinical practice.
Methods: A retrospective analysis was conducted on the clinical data of 13 children diagnosed with MODY2 at the Department of Pediatrics of Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology from August 2017 to July 2023.
Results: All 13 MODY2 children had a positive family history of diabetes and were found to have mild fasting hyperglycemia [(6.
Acta Neurol Belg
January 2025
Department of Pediatrics, Neurology Unit, University of Health Sciences, Ankara Etlik City Hospital, Ankara, Turkey.
Introduction: Zellweger spectrum disorder (ZSD) refers to a group of autosomal recessive genetic disorders that affect multiple organ systems and are predominantly caused by pathogenic variants in PEX genes. ZSD present a wide clinical spectrum, ranging from the most severe form, Zellweger syndrome, to the mildest form, Heimler syndrome.
Case Report: A 14-month-old male patient was brought to our clinic with recent-onset ocular tremors and unsteady gait.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!