Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arrays of TiO2 nanofibres (NFs) were successfully prepared by template sol-gel synthesis, using track-etched polycarbonate membranes as structure directing agent. The control of the sol-gel kinetic was crucial in order to homogeneously fill the pores with a continuous framework. For this reason acetylacetone was added to the sol-gel mixture as chelating agent. The band edge positions of TiO2 NFs were determined by a Mott-Schottky plot and diffuse reflectance analysis. The results support the presence of trace dopants which can act favorably with respect to the photoelectrochemical properties. The TiO2 NFs array showed enhanced photoelectrochemical activity both under UV light and visible light when used as photoanodes for the water splitting reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/26/16/165402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!