Unlabelled: Multiple myeloma pathogenesis is driven by the MYC oncoprotein, its dimerization with MAX, and the binding of this heterodimer to E-Boxes in the vicinity of target genes. The systemic utility of potent small molecule inhibitors of MYC-MAX dimerization was limited by poor bioavailability, rapid metabolism, and inadequate target site penetration. We hypothesized that new lipid-based MYC-MAX dimerization inhibitor prodrugs delivered via integrin-targeted nanoparticles (NP) would overcome prior shortcomings of MYC inhibitor approaches and prolong survival in a mouse model of cancer. An Sn 2 lipase-labile prodrug inhibitor of MYC-MAX dimerization (MI1-PD) was developed which decreased cell proliferation and induced apoptosis in cultured multiple myeloma cell lines alone (P < 0.05) and when incorporated into integrin-targeted lipid-encapsulated NPs (P < 0.05). Binding and efficacy of NPs closely correlated with integrin expression of the target multiple myeloma cells. Using a KaLwRij metastatic multiple myeloma mouse model, VLA-4-targeted NPs (20 nm and 200 nm) incorporating MI1-PD (D) NPs conferred significant survival benefits compared with respective NP controls, targeted (T) no-drug (ND), and untargeted (NT) control NPs (T/D 200: 46 days vs.
Nt/nd: 28 days, P < 0.05 and T/D 20: 52 days vs.
Nt/nd: 29 days, P = 0.001). The smaller particles performed better of the two sizes. Neither MI1 nor MI1-PD provided survival benefit when administered systemically as free compounds. These results demonstrate for the first time that a small molecule inhibitor of the MYC transcription factor can be an effective anticancer agent when delivered using a targeted nanotherapy approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571491 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-14-0774-T | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!