The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2015.03.104 | DOI Listing |
Mol Breed
September 2024
National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China.
J Med Chem
April 2024
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2015
Plant Biochemistry Laboratory, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. Electronic address:
The bifunctional diterpene synthase, copalyl diphosphate/kaurene synthase from the moss Physcomitrella patens (PpCPS/KS), catalyses the formation of at least four diterpenes, including ent-beyerene, ent-sandaracopimaradiene, ent-kaur-16-ene, and 16-hydroxy-ent-kaurene. The enzymatic activity has been confirmed through generation of a targeted PpCPS/KS knock-out mutant in P. patens via homologous recombination, through transient expression of PpCPS/KS in Nicotiana benthamiana, and expression of PpCPS/KS in E.
View Article and Find Full Text PDFBioorg Med Chem Lett
July 2015
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Electronic address:
Seventeen compounds (2-18) synthetized from the diterpenoid ent-beyer-15-en-18-ol (1) isolated from aerial part of Baccharis tola were tested for their gastroprotective activity on the model of HCl/EtOH-induced gastric lesions in mice. Furthermore cytotoxicity test toward fibroblasts and AGS cells were performed. The results showed that compound 1 (ED50=50 mg/kg), 2, 6 and 13 were the most active regarding gastroprotective activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2015
Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan. Electronic address:
The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!