Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201400742DOI Listing

Publication Analysis

Top Keywords

chloroplast transformation
12
transformation technology
12
toxoplasma gondii
8
sag1
8
leishmania infantum
8
heat shock
8
shock protein
8
tobacco chloroplasts
8
transplastomic plants
8
fusion toxoplasma
4

Similar Publications

The function of SnRK1 in regulating darkness-induced leaf senescence in cucumber.

Plant Physiol Biochem

December 2024

College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:

SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied.

View Article and Find Full Text PDF

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii, a model green alga for expressing foreign proteins, faces challenges in multigene expression and enhancing protein expression level in the chloroplast. To address these challenges, we compared heterologous promoters, terminators and intercistronic expression elements (IEEs). We transformed Chlamydomonas chloroplast with a biolistic approach to introduce vectors containing the NanoLuc expression unit regulated by Chlamydomonas or tobacco promoters and terminators.

View Article and Find Full Text PDF

An Optimized Version of the Small Synthetic Genome (Mini-Synplastome) for Plastid Metabolic Engineering in (Potato).

ACS Synth Biol

December 2024

Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, Tennessee 37996, United States.

Plastids represent promising targets in plant genetic engineering for many biotech applications, ranging from their use as bioreactors for the overproduction of valuable molecules to the installation of transgenes for improving plant traits. For over 30 years, routine methods of plastid transformation have relied on homologous recombination integrating vectors. However, nonintegrating episomal plasmids have recently received more attention as an innovative tool for the plastid genetic engineering of plant cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!