Tunable collagen I hydrogels for engineered physiological tissue micro-environments.

PLoS One

Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, United States of America.

Published: March 2016

Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378848PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122500PLOS

Publication Analysis

Top Keywords

collagen hydrogels
24
fabrication parameters
12
physiological tissue
8
tissue engineering
8
engineering applications
8
design collagen
8
parameters material
8
hydrogels order
8
hydrogels
6
collagen
6

Similar Publications

Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.

Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.

View Article and Find Full Text PDF

This study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds.

View Article and Find Full Text PDF

Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).

View Article and Find Full Text PDF

In Vitro Model of Vascular Remodeling Under Microfluidic Perfusion.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.

We developed a portable microfluidic system that combines spontaneous lumen formation from human umbilical endothelial cells (HUVECs) in fibrin-collagen hydrogels with active perfusion controlled by a braille actuator. Adaptive interstitial flow and feedthrough perfusion switching enabled the successful culture of spontaneously formed naturally branched lumens for more than one month. We obtained many large-area (2 mm × 3 mm) long-term (more than 30 days per run) time-lapse image datasets of the in vitro luminal network using this microfluidic system.

View Article and Find Full Text PDF

Lutein-loaded multifunctional hydrogel dressing based on carboxymethyl chitosan for chronic wound healing.

Int J Biol Macromol

January 2025

National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Oxidative stress is a major contributor to the difficulties in chronic wound healing. Although antioxidant hydrogels have been developed, they are still insufficient for addressing the entire chronic wound healing process. In this study, a lutein-loaded multifunctional hydrogel dressing (Lutein/CMC/PVP/TA, Lutein/CPT) with synergistic antioxidation properties was developed by hydrogen bonding and electrostatic crosslinking of tannic acid (TA) with carboxymethyl chitosan (CMC) and polyvinylpyrrolidone (PVP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!