Study Design: Biomechanical and radiographical study on cadaveric spines.
Objective: To explain the pathogenesis of vertebral "anterior wedge" deformity, which causes senile kyphosis.
Summary Of Background Data: This deformity arises with minimal trauma and is difficult to reproduce in cadaveric spines. We hypothesize that wedging is created by a 2-stage process. First, excessive loading damages a vertebral endplate and decompresses the adjacent intervertebral disc. This alters load sharing between the vertebral body cortex and trabeculae so that subsequent cyclic loading causes progressive collapse of the unsupported anterior cortex.
Methods: Thirty-four cadaveric thoracolumbar "motion segments," aged 70 to 98 years, were positioned in flexion and overloaded in compression. Physiologically reasonable cyclic compressive loading was then applied to each flexed specimen, at progressively higher loads, for up to 2 hours. Before and after initial overload and again after cyclic loading, the distribution of loading on the vertebra was assessed from measurements of compressive stress within the adjacent disc. These "stress profiles" were repeated in the neutral, flexed, and extended postures. Progressive vertebral body deformity was assessed radiographically.
Results: Compressive overload induced endplate fracture at an average force of 2.31 kN. There was minimal anterior wedging, but pressure in the adjacent disc nucleus (in flexion) fell by an average of 55% and neural arch load bearing increased by 166%. Subsequent cyclic loading exaggerated these changes and concentrated compressive stress within the anterior annulus. After both stages, height of the anterior and posterior vertebral cortexes was reduced by 32% and 12%, respectively, so that anterior wedging of the vertebral body increased from 5.0° to 11.4° on average. All changes were highly significant (P < 0.001).
Conclusion: Anterior wedge deformities can be created consistently by a 2-stage process involving initial endplate damage, followed by progressive collapse of the anterior cortex. Detecting initial endplate damage may be important to minimize vertebral deformity in patients with osteoporosis.
Level Of Evidence: N/A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0000000000000905 | DOI Listing |
Chin J Traumatol
December 2024
Department of Orthopaedics, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China.
Purpose: Bone cement-reinforced fenestrated pedicle screws (FPSs) have been widely used in the internal fixation and repair of the spine with osteoporosis in recent years and show significant improvement in fixation strength and stability. However, compared with conventional reinforcement methods, the advantages of bone cement-reinforced FPSs remain undetermined. This article compares the effects of fenestrated and conventional pedicle screws (CPSs) combined with bone cement in the treatment of osteoporosis.
View Article and Find Full Text PDFPLoS One
January 2025
Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China.
The cervical uncinate process is a unique structure of the cervical spine that undergoes significant changes in its morphological characteristics with age, and these changes may be related to osteoporosis. This study aimed to observe the distribution of cancellous bone in the cervical uncinate process and its morphological features using micro-computed tomography (Micro-CT) to gain a deeper understanding of the morphological characteristics of the uncinate microstructure. We performed Micro-CT scans on 31 sets of C3-C7 vertebrae, a total of 155 intact bone samples, and subsequently used the measurement software with the Micro-CT system to obtain parameters related to the cancellous bone of the uncinate process.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.
View Article and Find Full Text PDFWorld Neurosurg
December 2024
Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA. Electronic address:
Background: The Spinal Instability Neoplastic Score (SINS) is used in determining instability in patients with spinal metastases. Intermediate scores of 7 to 12 suggest possible instability, but there are no clear guidelines to address patients with these scores.
Methods: We searched in PubMed, EMBASE, and Cochrane databases for studies that included patient demographics, tumor histology, surgical or radiotherapy management, and outcomes of patients with intermediate SINS.
Mult Scler Relat Disord
December 2024
Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
Introduction: Longitudinally extensive spinal cord lesions (LESCL) are characterized by T2-hyperintense signals spanning at least three vertebral body segments, with neuromyelitis optica spectrum disorders (NMOSD) being a significant cause. This study aimed to characterize the clinical, radiological, serological, and cerebrospinal fluid (CSF) features of LESCL and to compare NMOSD and non-NMOSD cases.
Methods: We conducted a retrospective cross-sectional study of adult patients diagnosed with LESCL at our center over a twelve-year period collecting data on demographics, clinical presentations, MRI findings, CSF analysis, and serological testing for AQP4-IgG and MOG-IgG antibodies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!