The sequential bond dissociation energies (BDEs) of Ba(2+)(H2O)x complexes, where x = 1-8, are determined using threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. The electrospray ionization source generates complexes ranging in size from x = 6 to x = 8 with smaller complexes, x = 1-5, formed by an in-source fragmentation technique. The only products observed result from sequential loss of water ligands. Charge separation, a process in which both hydrated singly charged barium hydroxide and hydronium ion are formed, was not observed except for Ba(2+)(H2O)3 yielding BaOH(+) + H5O2(+). Modeling of the kinetic energy-dependent cross sections, taking into account the number of collisions, energy distributions, and lifetime effects for both primary and secondary water loss, provides 0 K BDEs. Experimental thermochemistry for the x = 1-3 complexes is obtained here for the first time. Hydration enthalpies and reaction coordinate pathways for charge separation are also examined computationally at several levels of theory. Our experimental and computational work are in excellent agreement in the x = 1-6 range. The present experimental values and theoretical calculations are also in reasonable agreement with the available literature values for experiment, x = 4-8, and theory, x = 1-6. Of the numerous calculations performed in the current study, B3LYP/DHF/def2-TZVPP calculations including counterpoise corrections reproduce our experimental values the best, although MP2(full)/DHF/def2-TZVPP//B3LYP/DHF/def2-TZVPP results are comparable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.5b01087 | DOI Listing |
J Colloid Interface Sci
January 2025
Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:
High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800, Australia. Electronic address:
Hard-to-cook (HTC) beans are characterised by extended cooking times. Although the changes in cell walls limiting hydration in HTC beans are widely investigated, the role of macro-molecules (starch and protein, which constitute >80 % of beans) are almost overlooked. This study investigates the structural changes in starch associated with the HTC quality in faba and adzuki beans stored at contrasting temperature and humidity regimes.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India.
The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States.
Independent methods show that sub-microMolar concentrations of perfluorooctanoic acid (PFOA), a member of the PFAS family of "forever chemicals", change the properties of DPPC vesicle bilayers. Specifically, calorimetry measurements show that PFOA at concentrations as low as 0.1 nM lowers DPPC's gel-liquid crystalline transition enthalpy by several J/g without changing the transition temperature (), and dynamic light scattering (DLS) data illustrate that PFOA markedly broadens the size distribution of DPPC vesicles.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India.
Hydrated deep eutectic solvents (DESs) are recognized for their potential in biocatalysis due to their tunability, biocompatibility, greenness, and ability to keep protein stable and active. However, the mechanisms governing enzyme stability and activity in DES remain poorly understood. Herein, using bromelain as the model enzyme and acetamide (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!