A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light-level geolocators reveal covariation between winter plumage molt and phenology in a trans-Saharan migratory bird. | LitMetric

Contingent individual performance can depend on the environment experienced at previous life-stages. Migratory birds are especially susceptible to such carry-over effects as they periodically travel between breeding ranges and 'wintering' areas where they may experience broadly different ecological conditions. However, the study of carry-over effects is hampered by the difficulty of tracking vagile organisms throughout their annual life-cycle. Using information from light-level geolocators on the barn swallow (Hirundo rustica), we tested if feather growth bar width (GBW), a proxy of feather growth rate which depends on individual condition, and wing isometric size and shape predict the phenology of subsequent migration. GBW did not predict duration of wintering but negatively predicted the duration of spring migration and arrival date to the breeding sites, suggesting that migration phenology is not constrained by molt, and individuals in prime condition achieve both faster molt and earlier arrival. Wing morphology did not predict migration duration, as expected if wing shape were optimized for foraging, rather than migration performance, in this aerially foraging, insectivorous bird. Thus, we showed for the first time that migration phenology in a long-distance migratory bird covaries with body condition during wintering, as reflected by the growth rate of feathers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-015-3299-1DOI Listing

Publication Analysis

Top Keywords

light-level geolocators
8
migratory bird
8
carry-over effects
8
feather growth
8
growth rate
8
migration phenology
8
migration
6
geolocators reveal
4
reveal covariation
4
covariation winter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!