This study was aimed to investigate the effect of Silymarin (SLM) on the hypertension state and the liver function changes induced by acetaminophen (APAP) in spontaneously hypertensive rat (SHR). Animals normotensive (N) or hypertensive (SHR) were treated or not with APAP (3 g/kg, oral) or previously treated with SLM. Twelve hours after APAP administration, plasmatic levels of liver function markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), gamma glutamyl transferase (γ-GT), and alkaline phosphatase (ALP) of all groups, were determined. Liver injury was assessed using histological studies. Samples of their livers were then used to determine the myeloperoxidase (MPO) activity and nitric oxide (NO) production and were also sectioned for histological analysis. No differences were observed for ALT, γ-GT, and GLU levels between SHR and normotensive rats groups. However, AST and ALP levels were increased in hypertensive animals. APAP treatment promoted an increase in ALT and AST in both SHR and N. However, only for SHR, γ-GT levels were increased. The inflammatory response evaluated by MPO activity and NO production showed that SHR was more susceptible to APAP effect, by increasing leucocyte infiltration. Silymarin treatment (Legalon) restored the hepatocyte functional and histopathological alterations induced by APAP in normotensive and hypertensive animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363982PMC
http://dx.doi.org/10.1155/2015/538317DOI Listing

Publication Analysis

Top Keywords

induced acetaminophen
8
spontaneously hypertensive
8
liver function
8
normotensive hypertensive
8
mpo activity
8
levels increased
8
hypertensive animals
8
apap
6
shr
6
hypertensive
5

Similar Publications

Acetaminophen (APAP) is a well-known drug that, in high doses, induces hepatotoxicity and nephrotoxicity. This study has investigated the preventive effect of the extract and fractions of on APAP-induced liver and kidney damage. In this experiment, after analysis of the extract using FTIR, toxicity was induced by APAP on the 7th day.

View Article and Find Full Text PDF

Background: Drug-induced hepatotoxicity, particularly from ethanol and acetaminophen (APAP), is a pressing global health challenge. This damage arises from oxidative stress and inflammation, manifesting as elevated liver enzymes and structural liver alterations. Resveratrol and silymarin, recognized for their antioxidant and anti-inflammatory properties, offer potential hepatoprotective benefits.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a crucial factor that poses a significant threat to human health. DILI process leads to the changes of reactive oxygen species and reactive nitrogen species content in cells, which leads to oxidative and nitrosative stress in cells. However, the high reactivity of hypochlorous acid (HOCl) and peroxynitrite (ONOO⁻), combined with a lack of in situ imaging techniques, has hindered a detailed understanding of their roles in DILI.

View Article and Find Full Text PDF

The liver and kidneys are important organs for body homeostasis but susceptible to damage or injury caused by different factors. A number of medicinal plants, such as have been proven effective in protecting the liver and kidneys from damage. Therefore, the present study aimed to examine the effect of extract (CcE) on paracetamol-induced hepatotoxicity and gentamicin-induced nephrotoxicity in rat model.

View Article and Find Full Text PDF

A new human autologous hepatocyte/macrophage co-culture system that mimics drug-induced liver injury-like inflammation.

Arch Toxicol

December 2024

Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, Leipzig, Germany.

The development of in vitro hepatocyte cell culture systems is crucial for investigating drug-induced liver injury (DILI). One prerequisite for monitoring DILI related immunologic reactions is the extension of primary human hepatocyte (PHH) cultures towards the inclusion of macrophages. Therefore, we developed and characterized an autologous co-culture system of PHH and primary human hepatic macrophages (hepM) (CoC1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!