Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electric fields (EFs) can reduce elevated levels of stress-related hormones in some organisms. In this study, endocrine effects of exposure to a 50 Hz EF were investigated in male BALB/c mice. Specifically, plasma glucocorticoid (GC) levels were examined because GC is known to mediate the stress response in mice, including changes induced by immobilization. Mice were exposed to 50 Hz EFs (at 2.5-200 kV/m) for 60 min. They were immobilized for the latter half (30 min). At the end of exposure period, blood samples were collected and GC levels estimated by spectrofluorometry. GC levels were not influenced by EFs in absence of immobilization, but they were significantly higher in immobilized mice than in non-immobilized mice (P < 0.01). Elevated GC levels induced by immobilization were significantly reduced by exposure to an EF at 10 kV/m (P < 0.05), and the effect of EFs at 0-10 kV/m on GC levels increased in a kV/m-dependent manner (P < 0.05). In contrast, following treatment with EFs at 50 and 200 kV/m, GC levels were higher than those observed at 10 kV/m. To assess the effect of EF treatment duration, mice were also exposed to 50 Hz EFs (10 kV/m) for 6, 20, or 60 min. Immobilization-induced increase in GC levels was significantly suppressed by EF exposure for 20 and 60 min. Therefore, our results demonstrate that extremely low-frequency EFs alter stress response of mice in a kV/m- and duration-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.21914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!