Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lt.24121DOI Listing

Publication Analysis

Top Keywords

engraftment repopulation
12
neonatal hepatocytes
12
hepatocyte transplantation
8
treatment crigler-najjar
8
cells neonatal
8
adult cells
8
gunn rats
8
bilirubin conjugates
8
transplanted animals
8
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!