Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.29536DOI Listing

Publication Analysis

Top Keywords

melanoma
9
oncolytic adenovirus
8
malignant melanoma
8
melanoma cells
8
melanoma patients
8
oncolytic
6
treatment melanoma
4
melanoma serotype
4
serotype 5/3
4
5/3 chimeric
4

Similar Publications

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

This study investigates the differential activation of the epithelial-mesenchymal transition (EMT) pathway in metastatic melanoma, focusing on BRAF- and NRAS-mutated samples from The Cancer Genome Atlas (TCGA). Gene Set Enrichment Analysis (GSEA) reveals that BRAF mutations are more significantly associated with increased EMT activation, relative to all other mutations in the dataset. In contrast, NRAS mutations were not significantly associated with gene expression of the EMT pathway, suggesting alternative mechanisms for metastasis.

View Article and Find Full Text PDF

Cancer cells present sialylated glycoconjugates that modulate the activity of various immune cells within the tumor microenvironment through trans interaction with immunosuppressive Siglec receptors. Identifying counter receptors for Siglecs can provide valuable targets for cancer immunotherapy, but it presents significant challenges. Here, the identification of DSG2 (Desmoglein 2) as a dominant counter receptor of Siglec-9 in melanoma cells is reported, using a workflow that combines the strength of proximity labeling and the advantage of CRISPR knockout screening.

View Article and Find Full Text PDF

Background: Neurologic symptoms seen in patients receiving immune checkpoint inhibitors (ICI) may not be entirely caused by immunotoxicity. We aim to highlight these confounding conditions through clinical cases to encourage early recognition and management.

Methods: We describe a series of seven cases from our institution that were treated with ICI and presented with Neurologic symptoms and were diagnosed with superimposed conditions beyond immunotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!