AI Article Synopsis

  • - The study examines the roles of kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) using anesthetized rats, finding differing results from previous research on brain slices.
  • - MF-LTP could be induced even when either KAR antagonists or group I mGluR antagonists were present; however, blocking both at the same time prevented LTP from occurring.
  • - Activation of either mGlu1 or mGlu5 receptors alone, in combination with inhibiting KARs, was sufficient to induce MF-LTP, indicating that all three receptors are involved in the process during high-frequency stimulation.

Article Abstract

The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either GluK1-selective KAR antagonists or group I mGluR antagonists. However, LTP was inhibited when the group I mGluRs and the GluK1-KARs were simultaneously inhibited. Either mGlu1 or mGlu5 receptor activation is sufficient to induce this form of LTP as selective inhibition of either subtype alone, together with the inhibition of KARs, did not inhibit MF-LTP. These data suggest that mGlu1 receptors, mGlu5 receptors, and GluK1-KARs are all engaged during high-frequency stimulation, and that the activation of any one of these receptors alone is sufficient for the induction of MF-LTP in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707721PMC
http://dx.doi.org/10.1002/hipo.22460DOI Listing

Publication Analysis

Top Keywords

metabotropic glutamate
8
glutamate receptors
8
mossy fiber
8
fiber long-term
8
long-term potentiation
8
receptors
6
mf-ltp
5
interchangeable role
4
role kainate
4
kainate metabotropic
4

Similar Publications

Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.

View Article and Find Full Text PDF

Provoked vulvodynia (PV) is the leading cause of vulvar pain and dyspareunia. The etiology of PV is multifactorial and remains poorly understood. PV is associated with a history of repeated vulvar inflammation and is often accompanied by sensory neuromodulation as a result of activation of the metabotropic glutamate receptor 5 (mGluR5) in the sensory nerve terminals.

View Article and Find Full Text PDF

Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.

View Article and Find Full Text PDF

GPCR oligomerization across classes: A2AR-mediated regulation of mGlu5R activation.

Int J Biol Macromol

January 2025

Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal. Electronic address:

The adenosine A receptor (AR), a class A GPCR, is a known player in neurological diseases, including Parkinson's disease and Alzheimer's disease, and is also implicated in SARS-CoV-2 infection. Recent studies have revealed its oligomerization with metabotropic glutamate receptor type 5 (mGluR), a class C G protein coupled receptor (GPCR) that exists in the homodimeric form. Simultaneous activation of both receptors synergistically enhances mGluR-mediated effects in the hippocampus.

View Article and Find Full Text PDF

The anti-dyskinetic effect of the clinic-ready mGluRpositive allosteric modulator AZD8529 in the 6-OHDA-lesioned rat.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.

L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!