Staphylococcus aureus impairs the airway epithelial barrier in vitro.

Int Forum Allergy Rhinol

Department of Surgery-Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia.

Published: June 2015

Background: Chronic rhinosinusitis (CRS) is a cluster of disorders that result in sinonasal mucosal inflammation. Staphylococcus aureus (S. aureus) is associated with severe and recalcitrant CRS. The purpose of our study was to investigate the effect of S. aureus on respiratory epithelial barrier structure and function.

Methods: Conditioned media from S. aureus reference strains (American Type Culture Collection [ATCC] 13565, 14458, and 25923) was applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) and transepithelial electrical resistance (TEER) was measured to assess cell-to-cell integrity. Electron microscopy was used to gauge the ciliated area and tight junctions (TJs). Additionally, the expression of the TJ protein zona occludens-1 (ZO-1) was examined via immunofluorescence. Statistical analysis was performed using analysis of variance (ANOVA) with pairwise Bonferroni-adjusted t tests.

Results: Secreted products applied to ALI cultures from S. aureus strain 13565 caused a concentration-dependent decline in electrical impedance compared to controls and reference strains 14458 and 25923 (p < 0.001). Electron microscopy showed a distinct separation between adjacent cells apically, in the region of TJs. The ciliated area was not affected; however, ZO-1 expression became discontinuous in HNECs exposed to the 13565 strain's conditioned media.

Conclusion: Conditioned media of the S. aureus strain 13565 damages the airway epithelium by disrupting the TJs between primary HNECs grown at an ALI. These findings suggest that strain-specific S. aureus-secreted product(s) compromise epithelial barrier function, which may constitute 1 of the roles played by S. aureus in the pathophysiology of recalcitrant CRS. Further research is required to uncover the relevant molecular mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alr.21517DOI Listing

Publication Analysis

Top Keywords

epithelial barrier
12
staphylococcus aureus
8
recalcitrant crs
8
conditioned media
8
media aureus
8
reference strains
8
14458 25923
8
ali cultures
8
electron microscopy
8
ciliated area
8

Similar Publications

Unlabelled: Owing to increased pressure from ethical groups and the public to avoid unnecessary animal testing, the need for new, responsive and biologically relevant in vitro models has surged. Models of the human alveolar epithelium are of particular interest since thorough investigations into air pollution and the effects of inhaled nanoparticles and e-cigarettes are needed. The lung is a crucial organ of interest due to potential exposures to endogenous material during occupational and ambient settings.

View Article and Find Full Text PDF

Unlabelled: The intestinal barrier is a complex interface of the human body, possessing the largest contact surface to nutrients and antigens and containing a major part of the immune system. It has to deal with continuous exposure to a broad mixture of essential, harmful, or useless substances and particles. In the context of plastic pollution and the ubiquitous occurrence of micro- and nanoplastics, oral exposure to such particles is of particular interest.

View Article and Find Full Text PDF

Purpose: For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.

Methods: Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650.

View Article and Find Full Text PDF

Electrical cell-substrate impedance sensing (ECIS) as a tool to study microbial-cell interactions.

In Vitro Model

November 2022

Division of Microbial Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala-12 India.

ECIS is an impedance-based method to study the cellular responses to a stimulus. Manipulating the alternating current frequencies in ECIS helped reveal the adherent monolayer properties, including morphology, spreading, proliferation, changes in junctional proteins and barrier integrity. Our objective in the current study was to understand the progression of infection in the airway epithelial cells using ECIS.

View Article and Find Full Text PDF

Introduction: Current intestinal models lack the mechanical forces present in the physiological environment, limiting their reliability for nanotoxicology studies. Here, we developed an enhanced Caco-2/HT29-MTX-E12 co-culture model incorporating orbital mechanical stimulation to better replicate intestinal conditions and investigate nanoparticle interactions.

Methods: We established co-cultures under static and dynamic conditions, evaluating their development through multiple approaches including barrier integrity measurements, gene expression analysis, and confocal microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!