Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.

Abdom Imaging

Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue - 0628, San Francisco, CA, 94143-0628, USA,

Published: August 2015

Objective: To evaluate a simultaneous PET/MRI approach to imaging patients with neuroendocrine tumor using a combination of (68)Ga-DOTA-TOC as a PET contrast agent and gadoxetate disodium as a hepatobiliary MRI contrast agent.

Materials And Methods: Ten patients with neuroendocrine tumor with known or suspected hepatic disease were imaged using a (68)Ga-DOTA-TOC PET/CT immediately followed by a 3.0T time-of-flight PET/MRI, using a combined whole body and liver specific imaging. The presence of lesions and DOTA-TOC avidity were assessed on CT, PET from PET/CT, diffusion weighted imaging, hepatobiliary phase imaging (HBP), and PET from PET/MRI. Maximum standardized uptake values (SUVmax) in hepatic lesions and nodal metastases were compared between PET/CT and PET/MRI, as were detection rates using each imaging approach.

Results: A total of 101 hepatic lesions were identified, 47 of which were DOTA-TOC avid and able to be individually measured on both PET/CT and PET/MRI. HBP imaging had a higher sensitivity for detection of hepatic lesions compared to CT or PET (99% vs. 46% and 64%, respectively; p values <0.001). There was a strong correlation between SUVmax of liver lesions obtained with PET/CT compared to PET/MR imaging (Pearson's correlation = 0.91). For nodal disease, CT had a higher sensitivity compared to whole body MRI (p = 0.015), although PET acquired from PET/MRI detected slightly more lesions compared to PET from PET/CT.

Conclusions: A simultaneous PET/MRI using both (68)Ga-DOTA-TOC and gadoxetate disodium was successful in whole body staging of patients with neuroendocrine tumor. HBP imaging had an increased detection rate for hepatic metastases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-015-0409-9DOI Listing

Publication Analysis

Top Keywords

patients neuroendocrine
12
neuroendocrine tumor
12
hepatic lesions
12
gadoxetate disodium
8
pet/ct pet/mri
8
pet/mri
6
imaging
6
simultaneous 68ga-dota-toc
4
68ga-dota-toc pet/mri
4
pet/mri gadoxetate
4

Similar Publications

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from chromaffin cells, with 80-85% originating in the adrenal medulla and 15-20% from extra-adrenal chromaffin tissues (paragangliomas). Approximately 30-40% of PPGLs have a hereditary component, making them one of the most genetically predisposed tumor types. Recent advances in genetic research have classified PPGLs into three molecular clusters: pseudohypoxia-related, kinase-signaling, and -signaling pathway variants.

View Article and Find Full Text PDF

The pathogenesis of long COVID (LC) still presents many areas of uncertainty. This leads to difficulties in finding an effective specific therapy. We hypothesize that the key to LC pathogenesis lies in the presence of chronic functional damage to the main anti-inflammatory mechanisms of our body: the three reflexes mediated by the vagus nerve, the hypothalamic-pituitary-adrenal (HPA) hormonal axis, and the mitochondrial redox status.

View Article and Find Full Text PDF

Hypoglycemia in non-diabetic individuals is a rare but critical condition that often signals an underlying pathology. Insulinoma, a rare neuroendocrine tumor of the pancreas, is a key differential diagnosis. As the most common functional pancreatic neuroendocrine tumors, insulinomas originate from pancreatic islet cells and are predominantly benign.

View Article and Find Full Text PDF

Patient-derived organoids from pancreatic cancer after pancreatectomy: Feasibility and organoid take rate in treatment-naïve periampullary tumors.

Pancreatology

December 2024

Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway. Electronic address:

Background/objective: Patient-derived organoids (PDOs) have emerged as essential for ex vivo modelling for pancreatic cancer (PDAC) but reports on efficacy and organoid take rate are scarce. This study aimed to assess the feasibility of establishing PDOs from resected specimens in periampullary tumors.

Methods: Patients undergoing surgery for suspected periampullary cancer were included.

View Article and Find Full Text PDF

IUPHAR Review: Targeted Therapies of Signaling Pathways Based on the Gut Microbiome in Autism Spectrum Disorders: Mechanistic and Therapeutic Applications.

Pharmacol Res

December 2024

Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. Electronic address:

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!