Persistent müllerian duct syndrome (PMD) with antimüllerian hormone (AMH) deficiency is usually associated with mutations or deletions of the AMH gene, although many cases have no identified gene association. We report on a genetic male with PMD and AMH deficiency associated with distal monosomy 10q. A term 3,230 g infant was born to a healthy 27-year-old. Fetal ultrasound had shown possible genital ambiguity. Postnatal exam showed a 0.5 cm phallus with basal meatus, normal scrotum with no palpable gonads, no vaginal orifice, and a rectal fistula with an imperforate anus. Voiding cystourethrogram with ultrasound, cystoscopy, and laparoscopy showed normal bladder, urethral orifice, distal vagina, cervix, and bilateral abdominal testis. At 24 hours of life, testosterone was within normal range with low AMH level. Chromosome microarray analysis showed 46, XY, del10(10q25.3q26.13) involving an 8.2 MB interstitial deletion. Whole exome sequencing identified a NOTCH2 variant (1p11.2). AMH sequencing revealed no abnormalities. Following multidisciplinary team and parent discussion, male gender was assigned. Testosterone treatment resulted in penile length of 1.5 cm. Bilateral orchiopexy and posterior sagittal anorectoplasty were performed at 11 months of age; rudimentary müllerian structures were identified. This observation suggests an association of 10qter elements with male differentiation including AMH expression and is similar to a patient with 46, XY, del(10q26.1) in which AMH levels were not reported. Regional candidate genes include FGFR2 (10q26.13). The possible contribution of a NOTCH2 variant cannot be excluded.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.37014DOI Listing

Publication Analysis

Top Keywords

müllerian duct
8
genetic male
8
distal monosomy
8
monosomy 10q
8
amh deficiency
8
deficiency associated
8
notch2 variant
8
amh
7
persistence müllerian
4
duct structures
4

Similar Publications

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Background: As survival following PD improved, long-term complications have emerged as an issue in current era. Pancreaticojejunostomy stenosis is the common long-term sequel after PD but rarely addressed. This study aimed to investigate the benefit of pancreatic duct stent in reducing PJ stenosis after PD.

View Article and Find Full Text PDF

Purpose: Intrahepatic cholangiocarcinoma (ICC) arises from the epithelial cells of the bile ducts present inside the liver parenchyma and is associated with an overall poor prognosis due to advanced disease stage at the time of diagnosis. We used the Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (CDC WONDER) database to determine ICC-related mortality patterns in the United States from 1999 till 2020.

Methods: Age-adjusted mortality rates (AAMR) and crude mortality rates (CMR) were extracted from the CDC WONDER database.

View Article and Find Full Text PDF

Testosterone-induced Seminal Vesicle-like Differentiation in Cervical Mesonephric Duct Remnants in a Female to Male Transgender Patient.

Int J Gynecol Pathol

January 2025

Department of Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK.

Pure ductal-type mesonephric remnants in the uterine cervix are rare. We report an unusual case in a 31-yr-old of cervical mesonephric remnants of predominantly ductal type exhibiting seminal vesicle-like differentiation in a female-to-male transgender patient receiving long-term testosterone therapy. To the best of our knowledge, this phenomenon has not been previously reported.

View Article and Find Full Text PDF

The mammalian kidney develops in three sequential stages referred to as the pronephros, mesonephros, and metanephros, each developing from the preceding form. All three phases of kidney development utilize epithelized tubules called nephrons, which function to take in filtrate from the blood or coelom and selectively reabsorb solutes the organism needs, leaving waste products to be excreted as urine. The pronephros are heavily studied in aquatic organisms such as zebrafish and Xenopus, as they develop quickly and are functional.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!