AI Article Synopsis

  • Recent advancements in microfluidics have led to increased interest in creating innovative designs that mimic organ functions on a microscale.
  • The article focuses on "organ-on-a-chip" systems, which simulate the properties of real organs for drug testing and tissue engineering purposes.
  • A comprehensive review of current technologies, design processes, and the specific instruments, cells, and materials utilized in these systems is provided.

Article Abstract

In recent years, the exploitation of phenomena surrounding microfluidics has seen an increase in popularity, as researchers have found a way to use their unique properties to create superior design alternatives. One such application is representing the properties and functions of different organs on a microscale chip for the purpose of drug testing or tissue engineering. With the introduction of "organ-on-a-chip" systems, researchers have proposed various methods on various organ-on-a-chip systems to mimic their in vivo counterparts. In this article, a systematic approach is taken to review current technologies pertaining to organ-on-a-chip systems. Design processes with attention to the particular instruments, cells, and materials used are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201500040DOI Listing

Publication Analysis

Top Keywords

organ-on-a-chip systems
8
microfluidic organ-on-a-chip
4
organ-on-a-chip technology
4
technology advancement
4
advancement drug
4
drug development
4
development toxicology
4
toxicology years
4
years exploitation
4
exploitation phenomena
4

Similar Publications

Advances in Microfluidic Cochlea-On-A-Chip.

Adv Sci (Weinh)

December 2024

Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.

The current understanding of the human auditory system has been primarily based on studies using animal and cellular models. Organoids have been used to simulate cochlear structures and replicate cochlear functions. However, the physical and chemical cues required to control the development of cochlear organoids accurately remain poorly understood, limiting research advances on cochlea-on-a-chip systems.

View Article and Find Full Text PDF

Modeling cancer-microbiome interactions in vitro: A guide to co-culture platforms.

Int J Cancer

December 2024

Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research Center, Heidelberg, Germany.

The biology of cancer is characterized by an intricate interplay of cells originating not only from the tumor mass, but also its surrounding environment. Different microbial species have been suggested to be enriched in tumors and the impacts of these on tumor phenotypes is subject to intensive investigation. For these efforts, model systems that accurately reflect human-microbe interactions are rapidly gaining importance.

View Article and Find Full Text PDF

Microphysiological systems (MPS) and Organs-on-Chips (OoCs) hold significant potential for replicating complex human biological processes . However, their widespread adoption by industry and regulatory bodies depends on effective qualification to demonstrate that these models are fit for purpose. Many models developed in academia are not initially designed with qualification in mind, which limits their future implementation in end-user settings.

View Article and Find Full Text PDF

Microphysiological systems (MPS) containing perfusable vascular beds unlock the ability to model tissue-scale elements of vascular physiology and disease in vitro. Access to inexpensive stereolithography (SLA) 3D printers now enables benchtop fabrication of polydimethylsiloxane (PDMS) organ chips, eliminating the need for cleanroom access and microfabrication expertise, and can facilitate broader adoption of MPS approaches in preclinical research. Rapid prototyping of organ chip mold designs accelerates the processes of design, testing, and iteration, but geometric distortion and surface roughness of SLA resin prints can impede the development of standardizable manufacturing workflows.

View Article and Find Full Text PDF

Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: