Mice perceive synergistic umami mixtures as tasting sweet.

Chem Senses

Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.

Published: June 2015

Previous electrophysiological investigation shows that combinations of compounds classified by humans as umami-tasting, such as glutamate salts and 5'-ribonucleotides, elicit synergistic responses in neurons throughout the rodent taste system and produce a pattern that resembles responses to sweet compounds. The current study tested the hypothesis that a synergistic mixture of monopotassium glutamate (MPG) and inositol monophosphate (IMP) possesses perceptual similarity to sucrose in mice. We estimated behavioral similarity among these tastants and the individual umami compounds using a series of conditioned taste aversion (CTA) tests, a procedure that measures whether a CTA formed to one stimulus generalizes to another. Our primary finding was that a CTA to a synergistic mixture of MPG + IMP generalizes to sucrose, and vice-versa. This indicates umami synergistic mixtures are perceived as having a sweet, or at least sucrose-like, taste to mice. Considering other recent studies, our data argue strongly in favor of multiple receptor mechanisms for umami detection, and complexity in taste perception models for rodents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498132PMC
http://dx.doi.org/10.1093/chemse/bjv010DOI Listing

Publication Analysis

Top Keywords

synergistic mixture
8
synergistic
5
mice perceive
4
perceive synergistic
4
umami
4
synergistic umami
4
umami mixtures
4
mixtures tasting
4
tasting sweet
4
sweet previous
4

Similar Publications

Synergistic production of nitrogen-rich hydrochar and solid biofuels via co-hydrothermal carbonization of microalgae and macroalgae: when nitrogen circularity matters.

Environ Res

January 2025

Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:

This work explores the synergies between N-rich (Chlorella pyrenoidosa) and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.

View Article and Find Full Text PDF

The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.

View Article and Find Full Text PDF

Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism.

View Article and Find Full Text PDF

Deciphering antioxidant interactions via data mining and RDKit.

Sci Rep

January 2025

Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.

Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.

View Article and Find Full Text PDF

Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!