Evaluation of the protective efficacy of four novel identified membrane associated proteins of Streptococcus suis serotype 2.

Vaccine

State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Published: May 2015

AI Article Synopsis

Article Abstract

Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that can also cause epidemics of life-threatening infections in humans. Surface proteins of pathogens play a critical role in the interaction with host system or environment, as they take part in processes like virulence, cytotoxicity, adhesion, signaling or transport, etc. Thus, surface proteins identified by the screening of immunoproteomic techniques are promising vaccine candidates or diagnostic markers. In this study, four membrane associated proteins (MAP) identified by immunoproteomic method were cloned and expressed as recombinant proteins with his-tag. Screening for vaccine candidates were firstly performed by protection assay in vivo and immunization with Sbp markedly protected mice against systemic S. suis 2 infection. The immune responses and protective of Sbp were further evaluated. The results showed that Sbp could elicit a strong humoral antibody response and protect mice from lethal challenge with S. suis 2. The antiserum against Sbp could efficiently impede survival of bacterial in whole blood killing assay and conferred significant protection against S. suis 2 infection in passive immunization assays. The findings indicate that Sbp may serve as an important factor in the pathogenesis of S. suis 2 and would be a promising subunit vaccine candidate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.03.038DOI Listing

Publication Analysis

Top Keywords

membrane associated
8
associated proteins
8
streptococcus suis
8
suis serotype
8
surface proteins
8
vaccine candidates
8
suis infection
8
suis
7
proteins
5
sbp
5

Similar Publications

Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes.

Water Res

January 2025

Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:

Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.

View Article and Find Full Text PDF

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.

Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!