Variations in foot posture are associated with the development of some lower limb injuries. However, the mechanisms underlying this relationship are unclear. The objective of this study was to compare foot kinematics between normal, pes cavus and pes planus foot posture groups using a multi-segment foot model. Ninety-seven healthy adults, aged 18-47 were classified as either normal (n=37), pes cavus (n=30) or pes planus (n=30) based on normative data for the Foot Posture Index, Arch Index and normalised navicular height. A five segment foot model was used to measure tri-planar motion of the rearfoot, midfoot, medial forefoot, lateral forefoot and hallux during barefoot walking at a self-selected speed. Angle at heel contact, peak angle, time to peak angle and range of motion was measured for each segment. One way ANOVAs with post-hoc analyses of mean differences were used to compare foot posture groups. The pes cavus group demonstrated a distinctive pattern of motion compared to the normal and pes planus foot posture groups. Effect sizes of significant mean differences were large and comparable to similar studies. Three key differences in overall foot function were observed between the groups: (i) altered frontal and transverse plane angles of the rearfoot in the pes cavus foot; (ii) Less midfoot motion in the pes cavus foot during initial contact and midstance; and (iii) reduced midfoot frontal plane ROM in the pes planus foot during pre-swing. These findings indicate that foot posture does influence motion of the foot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2015.03.004 | DOI Listing |
Bioengineering (Basel)
December 2024
Department Enfermería, Facultad de Enfermería Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Background: there is a high risk of falls in older adults. One of the factors contributing to fall episodes is advancing age due to deterioration of the proprioceptive system. Certain clinical procedures improve balance and posture, such as the use of insoles.
View Article and Find Full Text PDFJ Sci Med Sport
December 2024
Department of Sport Sciences, Miguel Hernández University of Elche, Spain.
Objectives: To explore whether the mean lumbar acceleration is a feasible tool for determining minimum eligibility criteria to compete in cerebral palsy football, differentiating between new sports classes, and to assess the effect of foot contacts on balance evaluation and class distinction.
Design: Cross-sectional study.
Methods: A total of 146 male cerebral palsy footballers classified into FT1 (n=34), FT2 (n=87), and FT3 (n=25), alongside 12 non-impaired athletes as a control group, participated.
J Exerc Sci Fit
January 2025
Sports Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai, China.
Gait Posture
December 2024
Faculty of Physical Education and Physiotherapy, Federal University of Uberlandia, Uberlandia, MG, Brazil.
Background: Foot orthoses have been considered to affect static and dynamic functional capacity and could help older adults maintain balance while walking. However, the impact of textured foot orthoses over co-contraction strategies remains uncertain. Therefore, this study aimed to assess the effect of different textured foot orthoses on ankle and knee joint muscle co-contraction in male and female older adults during walking.
View Article and Find Full Text PDFGait Posture
December 2024
Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, United States; Shriners Children's Chicago, 2211 N. Oak Park Ave, Chicago, IL 60707, United States.
Background: Understanding midfoot joint kinetics is valuable for improved treatment of foot pathologies. Segmental foot kinetics cannot currently be obtained in a standard gait lab without the use of multiple force plates or a pedobarographic plate overlaid with a force plate due to the single ground reaction force (GRF) vector.
Research Question: Can an algorithm be created to distribute the GRF into multiple segmental vectors that will allow for calculation of accurate midfoot and ankle moments?
Methods: 20 pediatric subjects (10 typically developing, 10 with foot pathology) underwent multi-segment foot gait analysis using the Milwaukee Foot Model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!