Many daily behaviors require us to actively focus on the current task and ignore all other distractions. Yet, ignoring everything else might hinder the ability to discover new ways to achieve the same goal. Here, we studied the neural mechanisms that support the spontaneous change to better strategies while an established strategy is executed. Multivariate neuroimaging analyses showed that before the spontaneous change to an alternative strategy, medial prefrontal cortex (MPFC) encoded information that was irrelevant for the current strategy but necessary for the later strategy. Importantly, this neural effect was related to future behavioral changes: information encoding in MPFC was changed only in participants who eventually switched their strategy and started before the actual strategy change. This allowed us to predict spontaneous strategy shifts ahead of time. These findings suggest that MPFC might internally simulate alternative strategies and shed new light on the organization of PFC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425426 | PMC |
http://dx.doi.org/10.1016/j.neuron.2015.03.015 | DOI Listing |
Prog Neurobiol
January 2025
Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health; Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute; Bethesda, MD, USA. Electronic address:
The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.
View Article and Find Full Text PDFBiomed J
January 2025
Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China. Electronic address:
Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model.
View Article and Find Full Text PDFPhytother Res
January 2025
Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Polo Universitario San Miniato, Siena, Italy.
Drugs generally used in major depressive disorder are considered inappropriate for the more common milder forms. The efficacy of saffron extracts has been demonstrated in mild to moderate depression and in preclinical models of depression. However, evidence of saffron activity on reduced hedonic responsiveness and motivational anhedonia is limited.
View Article and Find Full Text PDFPsychiatry Res Neuroimaging
December 2024
Center for Mindfulness and Compassion, Cambridge Health Alliance, Cambridge, MA, USA; Harvard Medical School, Boston, USA.
Behavior change often requires overcoming discomfort or difficult emotions. Emotional dysregulation associated with anxiety or depression may prevent behavior change initiation among people managing chronic illness. Mindfulness training may catalyze chronic disease self-management by reducing experiential avoidance of aversive experiences that act as barriers to change initiation.
View Article and Find Full Text PDFNeurochem Res
January 2025
Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!