Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

Colloids Surf B Biointerfaces

Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México, Mexico.

Published: May 2015

Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.03.019DOI Listing

Publication Analysis

Top Keywords

fibrous clays
28
anti-inflammatory anti-bacterial
8
anti-bacterial cytotoxic
8
cytotoxic activity
8
clays
8
inhibition myeloperoxidase
8
fibrous
7
inhibition
5
anti-inflammatory
4
activity fibrous
4

Similar Publications

Rice husk ash is an industrial waste produced by biomass power plant to generate electricity, which contains a lot of silica. The accumulation of rice husk ash not only consumes land resources, but also causes environmental pollution. It is an urgent problem to explore the resource utilization of rice husk ash.

View Article and Find Full Text PDF

Expansive soils, prone to significant volume changes with moisture fluctuations, challenge engineering infrastructure due to their swelling and shrinking. Traditional stabilization methods, including mechanical and chemical treatments, often have high material and environmental costs. This study explores fibrous by-products of flax processing, a sustainable alternative, for reinforcing expansive clay soil.

View Article and Find Full Text PDF

Microplastic accumulation and transport in agricultural soils with long-term sewage sludge amendments.

J Hazard Mater

December 2024

National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China. Electronic address:

Land application of sewage sludge brings microplastic contamination to soil. However, studies regarding the occurrence and mobility of sludge-borne microplastics in soil are insufficient. In the present study, based on an experimental field, the effects of sludge application amount on the accumulation and migration of microplastics in 0-20 (upper) and 20-40 cm (lower) soil layers were evaluated.

View Article and Find Full Text PDF

Distribution, flux, and risk assessment of microplastics at the Anzali Wetland, Iran, and its tributaries.

Environ Sci Pollut Res Int

September 2024

Inland Waters Aquaculture Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, P.O. Box 66, Bandar-E Anzali, Iran.

Microplastic pollution has raised significant concerns among scientific communities and society in recent years due to its increase and lesser-known effects on the environment. To improve the knowledge of microplastic pollution in freshwater, we investigated microplastics in Anzali Wetland, a Ramsar site in northern Iran, as well as its nine main entering rivers. The extracted microplastics were characterized via visual identification, SEM-EDX, and μ-Raman methods.

View Article and Find Full Text PDF

Clays are a class of porous materials; their surfaces are naturally covered by moisture. Weak thermal treatment may be considered practical to remove the water molecules, changing the surface properties and making the micro- and/or mesoporosities accessible to interact with other molecules. Herein, a modulated thermogravimetric analysis (MTGA) study of the moisture behavior on the structures of five, both fibrous and laminar, clay minerals is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!