Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich's ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich's ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich's ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age- and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich's ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values < 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich's ataxia compared to matched controls (P-values < 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia type 3. Within the cerebellar nuclei, reductions were significant when comparing spinocerebellar ataxia type 6 and Friedreich's ataxia to matched controls (P < 0.01, bootstrap-corrected cluster-size threshold; two-sample t-tests). Susceptibility weighted imaging allowed depiction of atrophy of the cerebellar nuclei in patients with Friedreich's ataxia and spinocerebellar ataxia type 3. In spinocerebellar ataxia type 6, pathology was not restricted to the cerebellar cortex but also involved the cerebellar nuclei. Functional magnetic resonance imaging data, on the other hand, revealed that pathology in Friedreich's ataxia and spinocerebellar ataxia type 3 is not restricted to the cerebellar nuclei. There was functional involvement of the cerebellar cortex despite no or little structural changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963415 | PMC |
http://dx.doi.org/10.1093/brain/awv064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!