Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches produced high-resolution photorealistic, real sized or easy to calibrate 3D surface models. Both methods equally failed when the scanned body surface was covered with body hair or reflective moist areas. Still, it can be concluded that single camera close range photogrammetry and optical surface scanning using Vectra H1 scanner represent relatively low-cost solutions which were shown to be beneficial for postmortem body documentation in forensic pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2015.03.005 | DOI Listing |
Orthod Fr
January 2025
Laboratoire Forme et Croissance du Crâne, Institut Imagine, 24 boulevard du Montparnasse, 75015 Paris, France
Introduction: Facial asymmetry, present in all human faces at varying degrees, plays a critical role in clinical fields such as orthodontics, orthognathic and plastic surgeries, and craniofacial reconstruction. Accurate quantification of facial asymmetry is essential for diagnosis, treatment planning, and post-surgical evaluation.
Material And Methods: This article examines contemporary methods for quantifying facial asymmetry, including two-dimensional (2D) and three-dimensional (3D) landmark-based approaches, surface curvature analysis, and advanced image-based techniques.
Front Plant Sci
January 2025
Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
Three-dimensional (3D) LiDAR is crucial for the autonomous navigation of orchard mobile robots, offering comprehensive and accurate environmental perception. However, the increased richness of information provided by 3D LiDAR also leads to a higher computational burden for point cloud data processing, posing challenges to real-time navigation. To address these issues, this paper proposes a 3D point cloud optimization method based on the octree data structure for autonomous navigation of orchard mobile robots.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Objective: To analyze the effectiveness of various techniques available for printing, finishing and polishing of 3D printed prosthesis.
Methods: The articles were selected from electronic databases including PubMed and Scopus. Recently, lot of advancements have been observed in the field of 3D printing in dentistry.
ACS Appl Mater Interfaces
January 2025
School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.
The main limitations of aqueous nickel-zinc batteries are their relatively low energy density and short cycle life, which are inextricably linked to the limitations of nickel-based cathodes. In this study, a low-crystallinity flower-like cobalt-doped nickel hydroxide (α-Ni(OH)-0.2Co) is constructed by hydrothermal reaction and employed as high-energy-density cathode for aqueous rechargeable nickel-zinc batteries.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!