3D surface topology guides stem cell adhesion and differentiation.

Biomaterials

Department of Chemistry, University College London, London WC1H 0AJ, UK; The MRC/UCL Centre for Medical Molecular Virology, University College London, London WC1H 0AJ, UK. Electronic address:

Published: June 2015

AI Article Synopsis

  • Polymerized high internal phase emulsion (polyHIPE) foams can be tailored for studying cell-substrate interactions, allowing researchers to create various pore structures and compare 2D and 3D environments with the same surface chemistry.
  • Using amphiphilic block copolymers, the study controls how ligands are arranged on the foam surface, influencing cell adhesion of human mesenchymal progenitor (hES-MP) cells.
  • The findings reveal that surface topology and chemistry affect cell adhesion and osteogenic differentiation, suggesting that the design of 3D scaffolds can regulate stem cell behavior independent of growth factors.

Article Abstract

Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379418PMC
http://dx.doi.org/10.1016/j.biomaterials.2015.01.034DOI Listing

Publication Analysis

Top Keywords

surface topology
16
stem cell
8
polyhipe foams
8
hes-mp cells
8
surface
5
topology guides
4
guides stem
4
cell adhesion
4
adhesion differentiation
4
differentiation polymerized
4

Similar Publications

Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.

View Article and Find Full Text PDF

ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.

View Article and Find Full Text PDF

Clean energy conversion and storage require simple, economical, and effective electrode materials to achieve promising results. The development of high-performance electrocatalysts with adequate stability and cost-effectiveness is essential to ensure low overpotentials toward the oxygen evolution reaction (OER). Herein, a cobalt-based metal-organic framework with 4,4,4-6T14 topology in combination with various ratios of NiMn-layered double hydroxide (Co-MOF@%NiMn-LDH, = 5, 10, 20, and 40%) is applied as an effective electrocatalyst for the oxidation of water.

View Article and Find Full Text PDF

This article presents a fabrication strategy on the structural design, optimization, additive manufacturing, and processing of metal mirror. Specifically, the study showcases the topology design of a metal mirror with diameter of 200 mm, the additive manufacturing of standard aluminum-based powder (AlSi10Mg), the high-precision single-point diamond turning process of the surface. By setting the feasible domain partition, a topology optimization model suitable for metal additive manufacturing and subsequent surface shaping was constructed, which takes into account the multi-load machining load conditions of single-point diamond turning technology and the material topology representation of standard support structures for additive manufacturing.

View Article and Find Full Text PDF

Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!