Background Information: Connexins (Cxs), the constitutive proteins of gap junctions, are key actors of many physiological processes. Therefore, alterations of Cx expression and degradation lead to the development of physiopathological disorders. Because of the formation of a double membrane vesicle termed annular gap junction (AGJ), gap junction degradation is a unique physiological process for which many cellular aspects remain unclear.
Results: By using a combination of time-lapse fluorescence microscopy and high-resolution transmission electron microscopy, we evidenced new specific cellular events concerning gap junction degradation and recycling. Indeed, by time lapse video microscopy we demonstrated, for the first time to our knowledge, that an entire AGJ can be fully recycled back to the plasma membrane. Moreover, we dissected the degradative processes of gap junction by electron microscopy approaches. Interestingly, in addition to canonical autophagy and heterophagy pathways, previously described, we discovered that both pathways could sometimes intermingle. Strikingly, our results also highlighted a new lysosome-based autophagy pathway that could play a pivotal role in common autophagy degradation.
Conclusions: The present investigation reveals that AGJ degradation is a more complex process that it was previously thought. First, a complete recycling of the gap junction plaque after its internalisation could occur. Second, the degradation of this peculiar double membrane structure is possible through autophagy, heterophagy, hetero-autophagy or by lysosomal-based autophagy. Altogether, this work underlines novel aspects of gap junction degradation that could be extended to other cell biology processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/boc.201400048 | DOI Listing |
J Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
Int J Pediatr Otorhinolaryngol
January 2025
Northeast Ohio Medical University College of Medicine, 4209 St, OH-44, Rootstown, OH, 44272, USA; HEARS, LLC, 632 E. Market St, Ste B, Akron, OH, 44304, USA. Electronic address:
Objectives: Define the extent to which pathogenic GJB2 (gap junction beta-2) variants are responsible for non-syndromic hearing loss (NSHL) in the Asian population.
Methods: Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed. CINAHL, Embase, and PubMed's MEDLINE were accessed from 1997 to 2023 using permutations of the MeSH terms: "Asian," ''Southeast Asian,'' "South Asian," "East Asian," "Southeastern Asian," and "GJB2.
Pharmaceutics
January 2025
Department of Pharmacology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina.
Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.
Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.
Int J Mol Sci
January 2025
Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!