Anesthesia and the developing brain: a way forward for clinical research.

Paediatr Anaesth

Anaesthesia and Pain Management Research Group, Murdoch Childrens Research Institute, Melbourne, Vic., Australia; Department of Anaesthesia and Pain Management, The Royal Children's Hospital, Melbourne, Vic., Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia.

Published: May 2015

It is now well established that many general anesthetics have a variety of effects on the developing brain in animal models. In contrast, human cohort studies show mixed evidence for any association between neurobehavioural outcome and anesthesia exposure in early childhood. In spite of large volumes of research, it remains very unclear if the animal studies have any clinical relevance; or indeed how, or if, clinical practice needs to be altered. Answering these questions is of great importance given the huge numbers of young children exposed to general anesthetics. A recent meeting in Genoa brought together researchers and clinicians to map a path forward for future clinical studies. This paper describes these discussions and conclusions. It was agreed that there is a need for large, detailed, prospective, observational studies, and for carefully designed trials. It may be impossible to design or conduct a single study to completely exclude the possibility that anesthetics can, under certain circumstances, produce long-term neurobehavioural changes in humans; however , observational studies will improve our understanding of which children are at greatest risk, and may also suggest potential underlying etiologies, and clinical trials will provide the strongest evidence to test the effectiveness of different strategies or anesthetic regimens with respect to better neurobehavioral outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pan.12652DOI Listing

Publication Analysis

Top Keywords

developing brain
8
general anesthetics
8
observational studies
8
clinical
5
studies
5
anesthesia developing
4
brain forward
4
forward clinical
4
clinical well
4
well established
4

Similar Publications

Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.

Nano Converg

January 2025

Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.

View Article and Find Full Text PDF

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!