This work describes the identification and characterization of an amine oxidase from Kocuria varians LTH 1540 (syn. Micrococcus varians) primarily acting on putrescine. Data from MALDI-TOF MS/MS and the identification of Δ(1)-pyrroline as degradation product from putrescine indicate that the enzyme is a flavin-dependent putrescine oxidase (PuO). Properties of partially purified enzyme have been determined. The enzyme oxidizes diamines, putrescine and cadaverine, and, to a lesser extent, polyamines, such as spermidine, but not monoamines. The kinetic constants (Km and Vmax) for the two major substrates were 94 ± 10 μM and 2.3 ± 0.1 μmol/min·mg for putrescine and 75 ± 5 μM and 0.15 ± 0.02 μmol/min·mg for cadaverine. Optimal temperature and pH were 45 °C and 8.5, respectively. Enzyme was stable until 50 °C. K. varians PuO is sensitive to human flavin-dependent amine oxidase inhibitors and carboxyl-modifying compounds. The new enzyme has been isolated from a bacterial starter used in the manufacture of fermented meat. One of the problems of fermented foods or beverages is the presence of toxic biogenic amines produced by bacteria. The importance of this works lies in the description of a new enzyme able to degrade two of the most abundant biogenic amines (putrescine and cadaverine), the use of which could be envisaged to diminish biogenic amines content in foods in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf5026967 | DOI Listing |
Alzheimers Dement
December 2024
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
Background: Our previous studies reported that D-galactose (D-gal) administration for four to eight weeks caused metabolic disturbance, brain mitochondrial dysfunction, and brain aging, leading to cognitive dysfunction in similar with natural aging condition. Spermidine is a polyamine that can be found naturally. Spermidine has been showed the beneficial effects on various models, such as attenuating metabolic/gut impairments in obesity, and ameliorating memory loss in aged model.
View Article and Find Full Text PDFJ Mol Model
January 2025
Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.
Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
The monoamine oxidase (MAO) gene family encodes for enzymes that perform the oxidative deamination of monoamines, a process required to degrade norepinephrine, serotonin, dopamine, and other amines. While mammalian MAO enzymes, MAO A and MAO B, have been extensively studied, the molecular properties of the other family members are only partly uncovered. This study aims to explore the evolution of monoamine oxidases, emphasizing understanding the MAO gene repertoire among vertebrates.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities.
View Article and Find Full Text PDFSci Rep
December 2024
Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
Proximity-dependent biotinylation coupled with mass spectrometry enables the characterization of subcellular proteomes. This technique has significantly advanced neuroscience by revealing sub-synaptic protein networks, such as the synaptic cleft and post-synaptic density. Profiling proteins at this detailed level is essential for understanding the molecular mechanisms of neuronal connectivity and transmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!