We previously reported that transcripts encoding the homeoprotein EGAM1N are expressed in preimplantation mouse embryos and embryonic stem (ES) cells, and the exogenous expression of EGAM1N inhibits the differentiation of ES cells. In order to clarify the relationship between the inhibition of differentiation and EGAM1N, we generated mouse MG1.19 ES cells stably expressing EGAM1N. Control transfectants with an empty vector formed relatively flattened cell colonies similar to those observed in parental MG1.19 cells. In contrast, Egam1n transfectants formed tightly aggregated cell colonies with increased localization of CDH1 at cell-to-cell interfaces. The protein levels of pluripotency factors, including TBX3 and SOX2, were also increased. The expression of Tbx3 transcripts was induced, although the level of Sox2 transcripts was almost unchanged. The expression of EGAM1N resulted in no obvious changes in the expression of genes encoding receptors, protein kinases, transcription factors, and their encoded proteins involved in the LIF-STAT3 signaling pathway. Alkaline phosphatase activity, a marker for the undifferentiated state, in Egam1n transfectants was exhibited in a clonal proliferation assay. When differentiation of Egam1n transfectants was induced, progression was prevented with increases in transcript levels of Pou5f1, Sox2, Nanog, Klf4, Tbx3, and their encoded proteins. However, Egam1n transfectants formed relatively flattened-cell layers as observed in the control, indicating that the expression of EGAM1N could not maintain LIF-independent self-renewal of ES cells. Overall, we suggest that expression of EGAM1N could inhibit differentiation, at least in part, by elevating the protein levels of pluripotency factors in MG1.19 ES cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2015.03.001 | DOI Listing |
Cytotechnology
December 2016
Laboratory for Advanced Animal Cell Technology, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan.
Generation of multiple cell types from embryonic stem (ES) cells and induced pluripotent stem cells is crucial to provide materials for regenerative medicine. EGAM1N has been found in preimplantation mouse embryos and mouse ES cells as a functionally unclassified homeoprotein. Recently, we reported that expression of EGAM1N suppressed the in vitro differentiation of ES cells into progenitor cells that arise in early embryogenesis.
View Article and Find Full Text PDFJ Biosci Bioeng
November 2015
Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidohbatanishi, Shimoshinjohnakano, Akita 010-0195, Japan. Electronic address:
We previously reported that transcripts encoding the homeoprotein EGAM1N are expressed in preimplantation mouse embryos and embryonic stem (ES) cells, and the exogenous expression of EGAM1N inhibits the differentiation of ES cells. In order to clarify the relationship between the inhibition of differentiation and EGAM1N, we generated mouse MG1.19 ES cells stably expressing EGAM1N.
View Article and Find Full Text PDFJ Biosci Bioeng
August 2013
Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
Reproduction
February 2011
Departments of Biotechnology Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
The mouse Crxos gene encodes three structurally related homeoproteins, EGAM1, EGAM1N, and EGAM1C, as transcription and splicing variants. Recently, we identified the functions of EGAM1 and EGAM1N in the regulation of differentiation in mouse embryonic stem cells. However, the function of EGAM1C remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!