FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911203PMC
http://dx.doi.org/10.5483/bmbrep.2015.48.11.041DOI Listing

Publication Analysis

Top Keywords

alkali burn-induced
8
burn-induced corneal
8
corneal inflammation
8
corneal alkali
8
angiogenic factors
8
corneal
7
pep-1-fk506bp
5
pep-1-fk506bp inhibits
4
alkali
4
inhibits alkali
4

Similar Publications

Corneal inflammation, a condition that can potentially lead to blindness, is often treated with topical eye drops. However, the limited ocular drug bioavailability of the eye drops necessitates frequent dosing. Herein, a nanoemulsion-based pseudopolyrotaxane hydrogel was fabricated to improve corneal bioavailability and thereby suppress inflammation.

View Article and Find Full Text PDF

A Multifunctional Nanodrug Co-Delivering VEGF-siRNA and Dexamethasone for Synergistic Therapy in Ocular Neovascular Diseases.

Int J Nanomedicine

November 2024

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People's Republic of China.

Introduction: Oxidant stress, abnormal angiogenesis, and inflammation are three key factors contributing to the development of ocular neovascular diseases (ONDs). This study aims to develop a multifunctional nanodrug, DEX@MPDA-Arg@Si (DMAS), which integrates mesoporous polydopamine, vascular endothelial growth factor (VEGF)-siRNA, and dexamethasone (DEX) to address these therapeutic targets.

Methods: Physicochemical properties of DMAS were measured using transmission electron microscopy and a nanoparticle size analyzer.

View Article and Find Full Text PDF

Histone methylation regulates neutrophil extracellular traps to attenuate corneal neovascularization.

Int Immunopharmacol

December 2024

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China. Electronic address:

Corneal neovascularization (CNV) severely affects corneal transparency and disrupts the homeostasis of the ocular environment. However, the underlying mechanism of CNV remains unclear. In this study, we investigated the role of neutrophil extracellular traps (NETs) played in CNV and how histone methylation regulates the characterization of NETs.

View Article and Find Full Text PDF

Background: Corneal neovascularization (CNV) is a sight-threatening condition that necessitates epigenetic control. The role of lysine-specific demethylase 1 (LSD1) in CNV remains unclear, despite its established significance in tumor angiogenesis regulation.

Methods: An alkali burn-induced CNV mouse model was used .

View Article and Find Full Text PDF

Development of an injectable oxidized dextran/gelatin hydrogel capable of promoting the healing of alkali burn-associated corneal wounds.

Int J Biol Macromol

July 2024

National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.

The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!