Combinatorial gene construct and non-viral delivery for anti-obesity in diet-induced obese mice.

J Control Release

Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, Incheon, Republic of Korea. Electronic address:

Published: June 2015

The combinatorial peptidergic therapy of islet amyloid polypeptide (IAPP) and leptin (LEP) analogues was once an optimistic option in treating obese animals and patients. However, the need for frequent administrations and its negative side effects prevent it from being a viable choice. Here, we developed a combinatorial gene therapy of IAPP and LEP, where two genes are inserted into a single plasmid with self-cleaving furin and 2A sites to treat diet-induced obese (DIO) mice. The developed plasmid DNA (pDNA) individually produced both IAPP and LEP peptides in vitro and in vivo. The pDNA was delivered with a non-viral polymeric carrier, and its once-a-week administrations demonstrated a synergistic loss of body weight and significant reductions of fat mass, blood glucose, and lipid levels in DIO mice. The results suggest that the combinatorial gene therapy would have higher potential than the peptidergic approach for future translation due to its improved practicability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2015.03.016DOI Listing

Publication Analysis

Top Keywords

combinatorial gene
12
diet-induced obese
8
mice combinatorial
8
gene therapy
8
iapp lep
8
dio mice
8
combinatorial
4
gene construct
4
construct non-viral
4
non-viral delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!