A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Team activity recognition in Association Football using a Bag-of-Words-based method. | LitMetric

Team activity recognition in Association Football using a Bag-of-Words-based method.

Hum Mov Sci

Institute of New Imaging Technologies (INIT), Jaume I University, Castellón, Spain. Electronic address:

Published: June 2015

In this paper, a new methodology is used to perform team activity recognition and analysis in Association Football. It is based on pattern recognition and machine learning techniques. In particular, a strategy based on the Bag-of-Words (BoW) technique is used to characterize short Football video clips that are used to explain the team's performance and to train advanced classifiers in automatic recognition of team activities. In addition to the neural network-based classifier, three more classifier families are tested: the k-Nearest Neighbor, the Support Vector Machine and the Random Forest. The results obtained show that the proposed methodology is able to explain the most common movements of a team and to perform the team activity recognition task with high accuracy when classifying three Football actions: Ball Possession, Quick Attack and Set Piece. Random Forest is the classifier obtaining the best classification results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humov.2015.03.007DOI Listing

Publication Analysis

Top Keywords

team activity
12
activity recognition
12
association football
8
perform team
8
random forest
8
team
5
recognition
5
recognition association
4
football
4
football bag-of-words-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!