Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, a new methodology is used to perform team activity recognition and analysis in Association Football. It is based on pattern recognition and machine learning techniques. In particular, a strategy based on the Bag-of-Words (BoW) technique is used to characterize short Football video clips that are used to explain the team's performance and to train advanced classifiers in automatic recognition of team activities. In addition to the neural network-based classifier, three more classifier families are tested: the k-Nearest Neighbor, the Support Vector Machine and the Random Forest. The results obtained show that the proposed methodology is able to explain the most common movements of a team and to perform the team activity recognition task with high accuracy when classifying three Football actions: Ball Possession, Quick Attack and Set Piece. Random Forest is the classifier obtaining the best classification results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humov.2015.03.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!