A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[The ROS-generating and antioxidant systems in the liver of rats treated with prednisolone and vitamin D3]. | LitMetric

The mechanisms of glucocorticoid-induced disturbances of liver function is currently not fully clarified. Vitamin D3 was previously shown to play an important role in the regulation of impaired oxidative metabolism and detoxification function of the liver associated with the effects of hepatotoxic compounds. The study was undertaken to define the intensity of oxidative metabolism in the rat liver and survival of hepatocytes after prolonged prednisolone administration and to assess whether vitamin D3 is capable to counter glucocorticoid-induced changes. It has been shown that prednisolone (0.5 mg per animal for 30 days) leads to 1.6-fold increase in the percentage of necrotic cells among isolated hepatocytes as compared with the control. The glucocorticoid-induced impairment of hepatocellular function was accompanied by enhanced generation of reactive oxygen species (ROS), accumulation of TBA-active products and carbonylated proteins but reduced levels of free SH-groups of low molecular weight compounds. It was demonstrated a decrease in the activities of key enzymes of antioxidant system (SOD, catalase, glutathione peroxidase), whereas the activities of pro-oxidant enzymes NAD(P)H-quinone oxidoreductase and semicarbazide-sensitive amine oxidase were shown to be increased. Vitamin D3 (and to greater extent in combination with α-tocopherol) administration (100 IU) on the background of glucocorticoid therapy caused normalizing effects on the level of ROS formation, oxidative modification of biomolecules and activity of antioxidant enzymes resulting in better survival of hepatocytes. These data suggest a potential role of vitamin D3 in the regulation of oxidative metabolism alterations related to hepatotoxic action of glucocorticoids.

Download full-text PDF

Source

Publication Analysis

Top Keywords

oxidative metabolism
12
survival hepatocytes
8
vitamin
5
[the ros-generating
4
ros-generating antioxidant
4
antioxidant systems
4
liver
4
systems liver
4
liver rats
4
rats treated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!