AI Article Synopsis

  • The study aimed to create a rabbit model for radiation-induced sciatic nerve injury (RISNI) using CT-guided stereotactic radiosurgery and to evaluate the significance of T2 measurements in assessing the injured nerves.
  • Twenty New Zealand rabbits were divided into two groups, with one group undergoing imaging for comparison and the other receiving different doses of radiation (35, 50, or 70 Gy) to observe the effects over time, including T2 value changes and functional assessments.
  • Results indicated that T2 values increased over time in irradiated nerves, particularly in the 50-Gy group, which showed worse functional scores and more severe nerve degeneration compared to the lower dose group; however, T2 measurements

Article Abstract

Objectives: To develop a rabbit model of radiation-induced sciatic nerve injury (RISNI), using computed tomography (CT)-guided stereotactic radiosurgery, and assess the value of T2 measurements of injured nerves.

Materials And Methods: Twenty New Zealand rabbits were randomly divided into A (n = 5) and B (n = 15) groups. Group A rabbits underwent CT and magnetic resonance scan and were then killed for comparison of images and anatomy of sciatic nerves. One side of the sciatic nerve of group B rabbits received irradiation doses of 35, 50, or 70 Gy (n = 5 per group). Magnetic resonance imaging and functional assessments were performed before irradiation and 1, 2, 3, and 4 months thereafter.

Result: The thigh section of the sciatic nerve outside the pelvis could be observed by CT and magnetic resonance imaging. T2 values of the irradiated nerve of the 35-Gy group increased gradually, peaking at 4 months; T2 values of the 50-Gy group increased faster, peaking at 3 months. Significant differences between the 35-Gy and control groups were found at 3 and 4 months, and between the 50-Gy and control groups at 2, 3, and 4 months. Functional scores of the 50-Gy group declined progressively, whereas the 35-Gy group scores reached a low point at 3 months posttreatment and then recovered. Functional scores of the irradiated limbs demonstrated a negative correlation with T2 values (r = -0.591 and -0.595, P < 0.05). Electron microscopy revealed progressive deformation and degeneration of the irradiated nerve in the 35- and 50-Gy groups, which were more severe in the 50-Gy group.

Conclusions: A rabbit RISNI model can be produced using the midthigh segment of the sciatic nerve and single-fraction doses of 35 and 50 Gy. Although T2 values are useful for monitoring RISNI, they may not be sensitive enough to evaluate its severity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RCT.0000000000000241DOI Listing

Publication Analysis

Top Keywords

sciatic nerve
20
magnetic resonance
12
rabbit model
8
model radiation-induced
8
radiation-induced sciatic
8
nerve injury
8
group rabbits
8
resonance imaging
8
irradiated nerve
8
35-gy group
8

Similar Publications

Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham).

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A.

Biomed Pharmacother

January 2025

Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:

Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.

View Article and Find Full Text PDF

Histamine H receptor blockade alleviates neuropathic pain through the regulation of glial cells activation.

Biomed Pharmacother

January 2025

Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:

Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).

View Article and Find Full Text PDF

As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!