Human alveolar epithelial cell responses to core-shell superparamagnetic iron oxide nanoparticles (SPIONs).

Langmuir

‡Department of General, Organic, and Biomedical Chemistry, Nuclear Magnetic Resonance and Molecular Imaging Laboratory, University of Mons, Mons 7000, Belgium.

Published: April 2015

Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared and coated with positively (-NH3(+)) and negatively (-COO(-)) charged shells. These NPs, as well as their "bare" precursor, which actually contain surface hydroxyl groups, have been characterized in vitro, and their influence on a human epithelial cell line has been assessed in terms of cell metabolic activity, cellular membrane lysis, mitochondrial activity, and reactive oxygen species production. Their physicochemical characterizations and protein-nanoparticle interactions have been determined using dynamic light scattering, high-resolution transmission electron microscopy, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectrometry, and Coomassie Blue fast staining. Cell-SPION interactions have been determined by PrestoBlue resazurin-based, Trypan Blue dye exclusion-based, and MTS cell proliferation assays as well as by reactive oxygen species determination. The results show that different surface characteristics cause different protein corona and cell responses. Some proteins (e.g., albumin) are adsorbed only on positively charged coatings and others (e.g., fibrinogen) only on negatively charged coating. No cell deaths occur, but cell proliferation is influenced by surface chemistry. Proliferation reduction is dose dependent and highest for bare SPIONs. Negatively charged SPIONs were the most biocompatible.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la5040646DOI Listing

Publication Analysis

Top Keywords

epithelial cell
8
cell responses
8
superparamagnetic iron
8
iron oxide
8
oxide nanoparticles
8
nanoparticles spions
8
reactive oxygen
8
oxygen species
8
interactions determined
8
cell proliferation
8

Similar Publications

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!