We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35 ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.103005 | DOI Listing |
Sci Rep
January 2025
Department of Physics, TU Dortmund University, Otto-Hahn-Straße 4, 44227, Dortmund, Germany.
Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
A symmetrical dual-D and dual-core single-mode fiber surface plasmon resonance (SPR) liquid sensor is designed for biological detection. The dual-core design optimizes the transmission path, improves the momentum matching between free electrons and photons, and facilitates bidirectional coupling, consequently amplifying the SPR effect and enabling sensitive monitoring of the refractive index changes of biological solutions. In this structure, a gold wire is placed in the middle of the polished surface of the double-D-shaped single-mode fiber (SMF) to produce high-quality free electrons and promote the mode-coupling excitation of the SPR effect.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba, Paraná, Brazil.
In this work, we report elastic integral, differential, and momentum-transfer cross sections for the scattering of low-energy electrons by salicylic acid. The cross sections were calculated with the Schwinger multichannel method implemented with norm-conserving pseudopotential within the static-exchange and static-exchange plus polarization (SEP) approximations for energies up to 15 eV. In the SEP approximation, four π* resonances were found at around 0.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFSmall
January 2025
Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada.
Electronic flat bands can lead to rich many-body quantum phases by quenching the electron's kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moiré superlattices. Here a general approach is proposed to introduce flat bands into widely studied transition metal dichalcogenide (TMD) materials by dilute intercalation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!