Sequestration of vacuum energy and the end of the universe.

Phys Rev Lett

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Published: March 2015

Recently, we proposed a mechanism for sequestering the standard model vacuum energy that predicts that the Universe will collapse. Here we present a simple mechanism for bringing about this collapse, employing a scalar field whose potential is linear and becomes negative, providing the negative energy density required to end the expansion. The slope of the potential is chosen to allow for the expansion to last until the current Hubble time, about 10^{10} years, to accommodate our Universe. Crucially, this choice is technically natural due to a shift symmetry. Moreover, vacuum energy sequestering selects radiatively stable initial conditions for the collapse, which guarantee that immediately before the turnaround the Universe is dominated by the linear potential which drives an epoch of accelerated expansion for at least an e fold. Thus, a single, technically natural choice for the slope ensures that the collapse is imminent and is preceded by the current stage of cosmic acceleration, giving a new answer to the "why now?"

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.101302DOI Listing

Publication Analysis

Top Keywords

vacuum energy
12
technically natural
8
sequestration vacuum
4
energy
4
universe
4
energy universe
4
universe proposed
4
proposed mechanism
4
mechanism sequestering
4
sequestering standard
4

Similar Publications

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte.

ACS Nano

January 2025

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.

Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid.

View Article and Find Full Text PDF

One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.

View Article and Find Full Text PDF

Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance.

View Article and Find Full Text PDF

First-principles calculations, particularly density functional theory (DFT) combined with D3 dispersion correction (DFT+D3), have proven to be valuable tools in simulating the adsorption of lead ions on TiCO surfaces. However, conventional theoretical models assume electrically neutral systems under vacuum conditions, neglecting the solvent environment and electrode potential's crucial effects. This study employed an implicit solvent model, treating the solvent as a continuous and homogeneous medium to capture the influence of different solvents by varying their dielectric constants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!