Doppler-Resolved Kinetics of Saturation Recovery.

J Phys Chem A

†Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States.

Published: July 2015

Frequency-modulated laser transient absorption has been used to monitor the ground-state rotational energy-transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground-state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b00628DOI Listing

Publication Analysis

Top Keywords

rotational state
12
rate constants
12
recovery rate
8
state dependence
8
rotational
5
rate
5
doppler-resolved kinetics
4
kinetics saturation
4
recovery
4
saturation recovery
4

Similar Publications

Histone N-tails modulate sequence-specific positioning of nucleosomes.

J Biol Chem

December 2024

National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Spatial organization of chromatin is essential for cellular functioning. However, the precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA still remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped in vivo.

View Article and Find Full Text PDF

A faulty simulation model guided Ramanujan Digital twin architecture for rotating machine health monitoring.

ISA Trans

December 2024

State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, PR China. Electronic address:

The conventional widely-used health monitoring methods for rotating machines have shortcomings such as the reliance on the selection of the preset parameters. Also, the strong noise interference caused by factors such as transmission path hinders the practical application of many fault feature extraction methods. To overcome these gaps, the digital twin notion is introduced and a new digital twin architecture called the Ramanujan Digital Twin (RDT) is designed.

View Article and Find Full Text PDF

Heading in Female Soccer: A Scoping Systematic Review.

Sports (Basel)

November 2024

International College of Football, Tongji University, No.1239, Siping Road, Yangpu, Shanghai 200092, China.

Heading is a key skill in soccer, and it is few investigated in females. Research on heading focused mostly on males and on young players. Data on females' soccer players are sparse and it is difficult to draw firm conclusions.

View Article and Find Full Text PDF

A Whole-Body Coordinated Motion Control Method for Highly Redundant Degrees of Freedom Mobile Humanoid Robots.

Biomimetics (Basel)

December 2024

School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.

Humanoid robots are becoming a global research focus. Due to the limitations of bipedal walking technology, mobile humanoid robots equipped with a wheeled chassis and dual arms have emerged as the most suitable configuration for performing complex tasks in factory or home environments. To address the high redundancy issue arising from the wheeled chassis and dual-arm design of mobile humanoid robots, this study proposes a whole-body coordinated motion control algorithm based on arm potential energy optimization.

View Article and Find Full Text PDF

Birds use their claws to perch on branches, which helps them to recover energy and observe their surroundings; however, most biomimetic flapping-wing aircraft can only fly, not perch. This study was conducted on the basis of bionic principles to replicate birds' claw and wing movements in order to design a highly biomimetic flapping-wing aircraft capable of perching. First, a posture conversion module with a multi-motor hemispherical gear structure allows the aircraft to flap, twist, swing, and transition between its folded and unfolded states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!