The structural and rheological consequences of adsorbing pyrophosphate anions to the edges and polyetheramines to the faces of montmorillonite platelets in aqueous suspension were investigated. Oscillatory rheology and scattering experiments showed that the two surface treatments act in different regions of the phase diagram and that this can be attributed to modifications of local particle interactions resulting in changes to the behavior and morphology of platelet clusters. The polyetheramine was found to neutralize surface charge, reducing electrostatic repulsion between platelets and therefore allowing them to come into closer proximity. This reduces the effective volume fraction of the clusters and reverses jamming in low ionic strength arrested phases. Conversely, the adsorption of pyrophosphate was found to introduce a high concentration of negative charge to the particle edge, resisting the formation of bonded percolating gels at high ionic strength. The two separate surface chemistries can be applied in parallel with no adverse effects and thus have the potential to be applied to dual functionalization of two-dimensional colloids such as platelets. This has implications for finer formulation design where targeted rheology modification could be achieved by careful selection of chemistry at one surface accompanied by an additional function at the other.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b00047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!