Objectives. The present study was conducted to evaluate the activity of nanometer propolis flavone (NPF) on inhibiting porcine parvovirus (PPV) in vitro and in vivo. Methods. In vitro, the effect of NPF on cellular infectivity of PPV was carried out before and after adding drug and simultaneous adding and PPV after being mixed. In vivo, the anti-PPV effect of NPF in guinea pigs was performed. Results. The results showed that NPF could significantly inhibit PPV infecting porcine kidney- (PK-) 15 cells compared with propolis flavone (PF), and the activity of NPF was the best in preadding drug pattern. NPF at high and medium doses was able to observably restrain PPV copying in lung, gonad, blood, and spleen, decrease the impact of PPV on weight of guinea pigs, and improve hemagglutination inhibition (HI) of PPV in serum. In addition, it could also increase the contents of IL-2 and IL-6 in serum after PPV challenge. Conclusion. These results indicated that NPF could significantly improve the anti-PPV activity of PF, and its high concentration possessed the best efficacy. Therefore, NPF would be expected to be exploited into a new-style antiviral drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357139 | PMC |
http://dx.doi.org/10.1155/2015/472876 | DOI Listing |
Plants (Basel)
December 2024
National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
Green propolis, particularly from the unique flora of the Brazilian Caatinga biome, has gained significant interest due to its diverse chemical composition and biological activities. This study focuses on the chemical characterization and antimicrobial evaluation of Caatinga green propolis. Twelve compounds were isolated through different chromatographic techniques, including flavanones (naringenin, 7--methyleriodictyol, sakuranetin), flavones (hispidulin, cirsimaritin), flavonols (quercetin, quercetin-3-methyl ether, kaempferol, 6-methoxykaempferol, viscosine, penduletin), and one chalcone (kukulkanin B).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB 21561, Alexandria, Egypt.
Obesity is a rapidly growing epidemic that continues to be a major severe health problem due to its association with various adverse health consequences. Since 1975, the WHO estimates that the prevalence of obesity has tripled globally. Chrysin is a flavone that is mostly found in the Passiflore species of plants and in propolis.
View Article and Find Full Text PDFPlanta Med
May 2024
Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy.
Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied.
View Article and Find Full Text PDFHeliyon
April 2024
Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113, Sofia, Bulgaria.
Photochem Photobiol Sci
December 2023
Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil.
Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!