Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia.

Arterioscler Thromb Vasc Biol

From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.).

Published: May 2015

Objectives: Pulmonary hypertension (PH) is a process of lung vascular remodeling, which can lead to right heart dysfunction and significant morbidity. The underlying mechanisms leading to PH are not well understood, and therapies are limited. Using intermittent hypoxia (IH) as a model of oxidant-induced PH, we identified an important role for endothelial cell mitophagy via mitochondrial uncoupling protein 2 (Ucp2) in the development of IH-induced PH.

Approach And Results: Ucp2 endothelial knockout (VE-KO) and Ucp2 Flox (Flox) mice were subjected to 5 weeks of IH. Ucp2 VE-KO mice exhibited higher right ventricular systolic pressure and worse right heart hypertrophy, as measured by increased right ventricle weight/left ventricle plus septal weight (RV/LV+S) ratio, at baseline and after IH. These changes were accompanied by increased mitophagy. Primary mouse lung endothelial cells transfected with Ucp2 siRNA and subjected to cyclic exposures to CoCl2 (chemical hypoxia) showed increased mitophagy, as measured by PTEN-induced putative kinase 1 and LC3BII/I ratios, decreased mitochondrial biogenesis, and increased apoptosis. Similar results were obtained in primary lung endothelial cells isolated from VE-KO mice. Moreover, silencing PTEN-induced putative kinase 1 in the endothelium of Ucp2 knockout mice, using endothelial-targeted lentiviral silencing RNA in vivo, prevented IH-induced PH. Human pulmonary artery endothelial cells from people with PH demonstrated changes similar to Ucp2-silenced mouse lung endothelial cells.

Conclusions: The loss of endothelial Ucp2 leads to excessive PTEN-induced putative kinase 1-induced mitophagy, inadequate mitochondrial biosynthesis, and increased apoptosis in endothelium. An endothelial Ucp2-PTEN-induced putative kinase 1 axis may be effective therapeutic targets in PH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722806PMC
http://dx.doi.org/10.1161/ATVBAHA.114.304865DOI Listing

Publication Analysis

Top Keywords

putative kinase
16
lung endothelial
12
endothelial cells
12
pten-induced putative
12
endothelial
9
uncoupling protein
8
pulmonary hypertension
8
intermittent hypoxia
8
ve-ko mice
8
increased mitophagy
8

Similar Publications

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse embryonic fibroblasts (MEFs), in a spontaneous immortalization model, PKD3 has been demonstrated as a critical regulator of cell proliferation after immortalization.

View Article and Find Full Text PDF

Methyl jasmonate is a plant signaling molecule involved in a wide range of functions, including stress responses. This study investigates the relative differential expression of microRNAs and their target genes in response to methyl jasmonate treatment of Scots pine needles. A combined strategy of high-throughput sequencing and in silico prediction of potential target genes was implemented.

View Article and Find Full Text PDF

Characterisation of Strains and Their Prophages That Carry Horse-Specific Leukocidin Genes .

Toxins (Basel)

January 2025

Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany.

Leukocidins of (.) are bicomponent toxins that form polymeric pores in host leukocyte membranes, leading to cell death and/or triggering apoptosis. Some of these toxin genes are located on prophages and are associated with specific hosts.

View Article and Find Full Text PDF

Peptide hormones in plants.

Mol Hortic

January 2025

Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!