Antibody immobilization onto surfaces has widespread applications in many different fields. It is desirable to bind antibodies such that their fragment-antigen-binding (Fab) units are oriented away from the surface in order to maximize analyte binding. The immobilization of only Fab' fragments yields benefits over the more traditional whole antibody immobilization technique. Bound Fab' fragments display higher surface densities, yielding a higher binding capacity for the analyte. The nucleophilic sulfide of the Fab' fragments allows for specific orientations to be achieved. For biosensors, this indicates a higher sensitivity and lower detection limit for a target analyte. The last thirty years have shown tremendous progress in the immobilization of Fab' fragments onto gold, Si-based, polysaccharide-based, plastic-based, magnetic, and inorganic surfaces. This review will show the current scope of Fab' immobilization techniques available and illustrate methods employed to minimize non-specific adsorption of undesirables. Furthermore, a variety of examples will be given to show the versatility of immobilized Fab' fragments in different applications and future directions of the field will be addressed, especially regarding biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2015.03.032 | DOI Listing |
Nat Commun
January 2025
Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the "always-on" response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement.
View Article and Find Full Text PDFToxicon
January 2025
Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. Electronic address:
Scorpion envenomation, especially from Hemiscorpius lepturus, poses a significant health risk, leading to considerable morbidity and mortality. The venom's major toxin, which includes phospholipase D (PLD), is responsible for various systemic complications. In prior studies, we identified a native phospholipase D (PLD) toxin as a key lethal factor in the venom of H.
View Article and Find Full Text PDFRecent Pat Biotechnol
January 2025
Center of Excellence in Recombinant Biopharmaceutical Proteins, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.
Aim: Construction of an immune phage display Nbs library based on the VHH framework for selecting -specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting mansoni.
Front Immunol
January 2025
State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
Background: Although immunoglobulin (Ig) alleles play a pivotal role in the antibody response to pathogens, research to understand their role in the humoral immune response is still limited.
Methods: We retrieved the germline sequences for the IGHV from the IMGT database to illustrate the amino acid polymorphism present within germline sequences of IGHV genes. We aassembled the sequences of IgM and IgD repertoire from 130 people to investigate the genetic variations in the population.
Sci Rep
January 2025
Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam.
EgB4 is a nanobody that could facilitate the development of drug-nanobody conjugates or drug delivery in cancer treatment due to its specific binding ability to the EGFR transmembrane protein. More significantly, EgB4 does not hamper the EGFR function and associates with EGFR in both the presence and absence of an EGF ligand. However, the difference in EgB4-EGFR interaction with and without EGF ligand is not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!