Ethanol production from rape straw by a two-stage pretreatment under mild conditions.

Bioprocess Biosyst Eng

Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain,

Published: August 2015

The growing interest on rape oil as raw material for biodiesel production has resulted in an increasing availability of rape straw, an agricultural residue that is an attractive renewable source for the production of second-generation bioethanol. Pretreatment is one of the key steps in such a conversion process. In this work, a sequential two-stage pretreatment with dilute sulfuric acid (130 °C, 60 min, 2% w/v H2SO4) followed by H2O2 (1-5% w/v) in alkaline medium (NaOH) at low temperature (60, 90 °C) and at different pretreatment times (30-90 min) was investigated. The first-acid stage allows the solubilisation of hemicellulose fraction into fermentable sugars. The second-alkaline peroxide stage allows the delignification of the solid material whilst the cellulose remaining in rape straw turned highly digestible by cellulases. Simultaneous saccharification and fermentation with 15% (w/v) delignified substrate at 90 °C, 5% H2O2 for 60 min, led to a maximum ethanol production of 53 g/L and a yield of 85% of the theoretical.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-015-1389-4DOI Listing

Publication Analysis

Top Keywords

rape straw
12
ethanol production
8
two-stage pretreatment
8
stage allows
8
rape
4
production rape
4
straw two-stage
4
pretreatment
4
pretreatment mild
4
mild conditions
4

Similar Publications

Ammonia (NH) volatilization caused by urea application has negative implications for human health, environmental quality, and the value of nitrogen fertilizers. It remains to be investigated how management strategies should be adopted to not only reduce NH volatilization but also improve nitrogen use efficiency (NUE) in the agriculture industry at present. Hence, a two-year field trial, including subplots, was conducted to simultaneously evaluate the effects of mulching treatments (NM: non-mulching; SM: straw mulching) and different fertilizer treatments (U: urea; U + NBPT: urea plus 1% N-(n-butyl) thiophosphoric triamide; U + CRU: the mixture of urea and controlled-release urea at a 3:7 ratio; U + OF: urea plus commercial organic fertilizer at a 3:7 ratio) on NH volatilization, crop production, and NUE in an oilseed rape-maize rotation system in the sloping farmland of purple soil in southwestern China between 2021 and 2023.

View Article and Find Full Text PDF

Regulation of straw-derived DOM and clay mineral complexation on mercury accumulation in vegetables.

Environ Res

November 2024

Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.

Article Synopsis
  • The study investigates how dissolved organic matter (DOM) from straw affects mercury (Hg) dynamics in soil and plants, particularly focusing on its impact on methylmercury (MeHg) accumulation.
  • Results show that straw-derived DOM increases MeHg levels in soil and water spinach, but humified DOM can reduce these levels significantly.
  • Additionally, interactions between humified DOM and clay minerals (like montmorillonite) play a crucial role in either promoting or inhibiting Hg methylation and accumulation in plants.
View Article and Find Full Text PDF

Analysis of the phytoremediation potential, rice safety, and economic benefits of light to moderate Cd-contaminated farmland in oilseed rape-rice rotation with straw removal: A three-year field trial.

Environ Res

December 2024

College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.

Under the dual pressures of food security and soil cadmium (Cd) pollution in China, the use of an oilseed rape-rice rotation system and phytoremediation has been proposed as an effective measure to extract heavy metals from soil, achieve safe rice production, and alleviate soil heavy metal stress. A three-year field rotation experiment by straw removal was conducted in light to moderate Cd-contaminated soil in Hunan, China. The experiment involved rotating two oilseed rape varieties, LSYH and ZYZ, with two rice varieties, the low-accumulation variety XWX and the high-accumulation variety TYHZ.

View Article and Find Full Text PDF

To investigate the effects of the combined addition of and sucrose on the fermentation weight loss (FWL), fermentation quality, and microbial community structure of ensiled rape straw under varying packing density conditions. After harvesting, the rapeseed straw was collected, cut into 1-2 cm pieces, and sprayed with sterile water to adjust the moisture content to 60%. The straw was then divided into two groups: one treated with additives (1 × 10 CFU/g fresh material of and 10 kg/t fresh material of sucrose), and the other sprayed with an equivalent amount of sterile water as the control (CK).

View Article and Find Full Text PDF

Effects of straw structure and component on feeding efficiency of yellow mealworm for insect protein production.

Bioresour Technol

December 2024

College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China. Electronic address:

Elucidating the influence of straw structure and component on the feeding efficacy of yellow mealworm is pivotal for improving insect protein production from straw. This research utilized four distinct types of straws-water hyacinth straw (WHS), corn straw (CS), rape straw (RAS), and rice straw (RIS)-as the sole substrate for larvae. Results indicated that the straw utilization rate and fresh larval weight gain rate followed the order of WHS > CS > RAS > RIS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!