The differential contributions of the parvocellular and the magnocellular subdivisions of the red nucleus to skilled reaching in the rat.

Neuroscience

Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada. Electronic address:

Published: June 2015

During the execution of the skilled reaching task, naïve rats bring their elbow to the midline of their body to aim at the food target, perform the arpeggio movement to grasp it and supinate the paw to bring the food to their mouth. Red nucleus lesions in the rat interfere with each of these three movement elements of reaching. On the other hand, lesions to the rubrospinal tract, which originate from the magnocellular subdivision of the red nucleus, only interfere with the arpeggio movement. This latter evidence strongly suggests that impairment in aiming and supinating could be under the control of the parvocellular subdivision of the red nucleus. In order to test this hypothesis, rats were trained on the skilled reaching task and then received either complete lesions of the red nucleus or lesions restricted to its parvo- or magnocellular subdivision. In line with previous data, complete excitotoxic lesions of the red nucleus compromised limb aiming, arpeggio and supination. Lesions restricted to the parvocellular division of the red nucleus abolish supination and interfere with aiming, although the latter result did not reach significance. The results are discussed in terms of the distinct connectivity and functional significance of these two architectonic subdivisions of the red nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2015.03.027DOI Listing

Publication Analysis

Top Keywords

red nucleus
32
skilled reaching
12
red
8
subdivisions red
8
nucleus
8
reaching task
8
arpeggio movement
8
nucleus lesions
8
magnocellular subdivision
8
subdivision red
8

Similar Publications

Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes.

View Article and Find Full Text PDF
Article Synopsis
  • This study aimed to analyze brain iron changes in patients with acute ischemic stroke (AIS) using quantitative susceptibility mapping (QSM) to assist with early diagnosis and treatment.
  • A total of 34 AIS patients and 30 healthy controls underwent QSM and conventional MRI, revealing significant increases in susceptibility values in specific brain regions (bilateral caudate nucleus and putamen) in AIS patients compared to controls.
  • The study found that the highest diagnostic accuracy for distinguishing AIS from healthy individuals was 72.2%, while factors like smoking showed a notable correlation with increased susceptibility values, although overall clinical scores didn't significantly correlate with iron changes.
View Article and Find Full Text PDF

Differences in protein lactylation between pale, soft and exudative and red, firm and non-exudative pork.

Meat Sci

December 2024

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

This study aimed to understand the development of pale, soft, and exudative (PSE) pork from a new perspective by comparing the differences of lactate-induced protein lactylation and its potential regulators including E1A binding protein p300 (p300) and cAMP response element binding protein (CBP) between PSE and red, firm, and non-exudative (RFN) pork at 1 h postmortem. Results demonstrated that PSE pork presented lower glycogen contents and higher lactate levels than RFN pork (P < 0.05).

View Article and Find Full Text PDF

Molecular characterization, transcriptional profiling, and antioxidant activity assessment of nucleoredoxin (NXN) as a novel member of thioredoxin from red-lip mullet (Planiliza haematocheilus).

Fish Shellfish Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Nucleoredoxin (NXN) is a prominent oxidoreductase enzyme, classified under the thioredoxin family, and plays a pivotal role in regulating cellular redox homeostasis. Although the functional characterization of NXN has been extensively studied in mammals, its role in fish remains relatively unexplored. In this study, the NXN gene from Planiliza haematocheilus (PhNXN) was molecularly and functionally characterized using in silico tools, expression analyses, and in vitro assays.

View Article and Find Full Text PDF

Early therapeutic efficacy of condoliase chemonucleolysis for lumbar disc herniation.

J Orthop Surg Res

December 2024

Department of Orthopaedic Surgery, Japan Red Cross Aichi Medical Center Nagoya Daini Hospital, Myokencho 2-9, Syowa-Ku, Nagoya, Aichi, 466-8650, Japan.

Background: Low back pain is often caused by lumbar disc herniation (LDH). Treatment of LDH is possible using chemonucleolysis of the nucleus pulposus with condoliase injection. However, onset of the therapeutic effect varies among patients, with improvement from an early stage to 3 months post-injection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!