Antimony (Sb) pollution has become a pressing environmental problem in recent years. Trees have been proven to have great potential for the feasible phytomanagement; however, little is known about Sb retention and tolerance in trees. The Chinese cork oak (Quercus variabilis Bl.) is known to be capable of growth in soils containing high concentrations of Sb. This study explored in detail the retention and acclimation of Q. variabilis under moderate and high external Sb levels. Results revealed that Q. variabilis could tolerate and accumulate high Sb (1623.39 mg kg(-1) DW) in roots. Dynamics of Sb retention in leaves, stems, and roots of Q. variabilis were different. Leaf Sb remained at a certain level for several weeks, while in roots and stems, Sb concentrations continued to increase. Sb damaged tree's PSII reaction cores but elicited defense mechanism at the donor side of PSII. It affected the electron transport flow after QA (-) more strongly than the oxygen-evolving complex and light-harvesting pigment-protein complex II. Sb also decreased leaf chlorophyll concentrations and therefore inhibited plant growth. During acclimation to Sb toxicity, Sb concentrations in leaves, stems, and roots decreased, with photosynthetic activity and pigments recovering to normal levels by the end of the experiment. These findings suggest that Sb tolerance in Q. variabilis is inducible. Acclimation seems to be related to homeostasis of Sb in plants. Results of this study can provide useful information for trees breeding and selection of Sb phytomanagement strategies, exploiting the established ability of Q. variabilis to transport, delocalize in the leaves, and tolerate Sb pollutions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-4304-2DOI Listing

Publication Analysis

Top Keywords

chinese cork
8
cork oak
8
oak quercus
8
quercus variabilis
8
leaves stems
8
stems roots
8
variabilis
7
responses acclimation
4
acclimation chinese
4
variabilis metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!