The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development.

Development

Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain Université Paris-Sud, INSERM UMR-S757, Orsay 91405, France Centre de Génétique Moléculaire (UPR3404), CNRS, 1 avenue de la Terrasse, Gif-Sur-Yvette 91198, France

Published: April 2015

Organ shaping and patterning depends on the coordinated regulation of multiple processes. The Drosophila compound eye provides an excellent model to study the coordination of cell fate and cell positioning during morphogenesis. Here, we find that loss of vav oncogene function during eye development is associated with a disorganised retina characterised by the presence of additional cells of all types. We demonstrate that these defects result from two distinct roles of Vav. First, and in contrast to its well-established role as a positive effector of the EGF receptor (EGFR), we show that readouts of the EGFR pathway are upregulated in vav mutant larval eye disc and pupal retina, indicating that Vav antagonises EGFR signalling during eye development. Accordingly, decreasing EGFR signalling in vav mutant eyes restores retinal organisation and rescues most vav mutant phenotypes. Second, using live imaging in the pupal retina, we observe that vav mutant cells do not form stable adherens junctions, causing various defects, such as recruitment of extra primary pigment cells. In agreement with this role in junction dynamics, we observe that these phenotypes can be exacerbated by lowering DE-Cadherin or Cindr levels. Taken together, our findings establish that Vav acts at multiple times during eye development to prevent excessive cell recruitment by limiting EGFR signalling and by regulating junction dynamics to ensure the correct patterning and morphogenesis of the Drosophila eye.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.110585DOI Listing

Publication Analysis

Top Keywords

egfr signalling
16
eye development
16
vav mutant
16
junction dynamics
12
vav
9
vav oncogene
8
antagonises egfr
8
drosophila eye
8
pupal retina
8
eye
7

Similar Publications

: Rat sarcoma (Ras) proteins, Kirsten, Harvey, and Neuroblastoma rat sarcoma viral oncogene homolog (KRAS, HRAS, and NRAS, respectively), are a family of GTPases, which are key regulators of cellular growth, differentiation, and apoptosis through signal transduction pathways modulated by growth factors that have been recognized to be dysregulated in PCOS. This study explores Ras signaling proteins and growth factor-related proteins in polycystic ovary syndrome (PCOS). : In a well-validated PCOS database of 147 PCOS and 97 control women, plasma was batch analyzed using Somascan proteomic analysis for circulating KRas, Ras GTPase-activating protein-1 (RASA1), and 45 growth factor-related proteins.

View Article and Find Full Text PDF

Exploring manzamine a: a promising anti-lung cancer agent from marine sponge sp.

Front Pharmacol

February 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Manzamine A (MA), a bioactive compound derived from the marine sponge sp., shows considerable therapeutic potential, particularly in the treatment of various cancer types. Extracted with acetone and purified through chromatography, MA exhibits a bioavailability of 20.

View Article and Find Full Text PDF

Background: An essential component of cell development, proliferation, and survival is the transmembrane receptor known as the epidermal growth factor receptor (EGFR). Dysregulated EGFR signalling is an appealing pathway that has been linked to the genesis and progression of several cancer types. EGFR tyrosine kinase inhibitors (TKIs) are targeted drugs that show promise in the fight against cancer.

View Article and Find Full Text PDF

Lapatinib ameliorates skin fibrosis by inhibiting TGF-β1/Smad and non-Smad signaling pathway.

Sci Rep

March 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.

Skin fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) in the dermis, can lead to hypertrophic scars and impaired mobility. The ErbB family of receptor tyrosine kinases, including ErbB1 and ErbB2, plays a crucial role in organ fibrosis, but their specific impact on skin fibrosis is less understood. This study investigated the role of ErbB1 and ErbB2 in skin fibrosis and the therapeutic potential of lapatinib, a dual ErbB1 and ErbB2 tyrosine kinase inhibitor.

View Article and Find Full Text PDF

Aging and senescence: Key players in brain tumor progression and drug resistance.

Drug Resist Updat

March 2025

Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. Electronic address:

Aging plays a critical role in the development, progression, and therapeutic challenges associated with brain tumors, particularly glioblastomas (GBM). As the population ages, the incidence of brain tumors, including GBM, increases, with aging emerging as a significant prognostic factor influencing survival outcomes. This review examines the molecular mechanisms linking aging and brain tumor progression, with a specific focus on glioblastomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!