p53 binds enhancers to regulate key target genes. Here, we globally mapped p53-regulated enhancers by looking at enhancer RNA (eRNA) production. Intriguingly, while many p53-induced enhancers contained p53-binding sites, most did not. As long non-coding RNAs (lncRNAs) are prominent regulators of chromatin dynamics, we hypothesized that p53-induced lncRNAs contribute to the activation of enhancers by p53. Among p53-induced lncRNAs, we identified LED and demonstrate that its suppression attenuates p53 function. Chromatin-binding and eRNA expression analyses show that LED associates with and activates strong enhancers. One prominent target of LED was located at an enhancer region within CDKN1A gene, a potent p53-responsive cell cycle inhibitor. LED knockdown reduces CDKN1A enhancer induction and activity, and cell cycle arrest following p53 activation. Finally, promoter-associated hypermethylation analysis shows silencing of LED in human tumours. Thus, our study identifies a new layer of complexity in the p53 pathway and suggests its dysregulation in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389233PMC
http://dx.doi.org/10.1038/ncomms7520DOI Listing

Publication Analysis

Top Keywords

p53-induced lncrnas
8
cell cycle
8
enhancers
6
p53
5
led
5
genome-wide profiling
4
profiling p53-regulated
4
enhancer
4
p53-regulated enhancer
4
enhancer rnas
4

Similar Publications

DNA Damage-Induced Ferroptosis: A Boolean Model Regulating p53 and Non-Coding RNAs in Drug Resistance.

Proteomes

January 2025

Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.

The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms.

View Article and Find Full Text PDF

Background: There is growing evidence that long non-coding RNA long iatrogenic non-protein-coding RNA p53-induced transcript (LINC-PINT) is highly expressed in cancer tissue and is associated with the prognosis of cancer patients. The present study systematically analyzed the prognostic significance of LINC-PINT expression in cancer patients. We aimed to reveal the association between LINC-PINT expression and survival in cancer patients.

View Article and Find Full Text PDF

Attenuates Expression and Affects Alternative Splicing of a Subset of p53-Regulated Genes.

Cancers (Basel)

April 2024

Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany.

Background: Loss of the p53-inducible in p53-proficient CRC cell lines results in increased sensitivity to DNA-damaging chemotherapeutics. Here, we comprehensively analyze how affects the p53-induced transcriptional program.

Methods: Using a CRISPR/Cas9-approach, we deleted the p53 binding site in the promoter of SW480 colorectal cancer cells and subjected them to RNA-Seq analysis after the activation of ectopic p53.

View Article and Find Full Text PDF

Long intergenic non-protein coding RNA, P53 induced transcript (LINC-PINT) exhibits different expression patterns in the majority of tumors, yet its relationship with cancer prognosis remains a subject of debate. This study aims to comprehensively investigate the prognostic significance of LINC-PINT in diverse human cancer. A systematic search was conducted in PubMed, Embase, Cochrane Library, and Web of Science databases to identify pertinent studies exploring the correlation between LINC-PINT expression and cancer patients.

View Article and Find Full Text PDF

Long non-coding RNA GAS5 promotes cisplatin-chemosensitivity of osteosarcoma cells via microRNA-26b-5p/TP53INP1 axis.

J Orthop Surg Res

November 2023

Respiration Medicine, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, China.

Osteosarcoma is a common malignant bone tumor. Cisplatin (DDP) achieves a high response rate in osteosarcoma. Here we aim to study the dysregulation of long non-coding RNA the growth arrest-specific transcript 5 (GAS5), and its roles in DDP-resistance of osteosarcoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!