A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Magnetoelectric quasi-(0-3) nanocomposite heterostructures. | LitMetric

Magnetoelectric quasi-(0-3) nanocomposite heterostructures.

Nat Commun

Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.

Published: March 2015

Magnetoelectric composite thin films hold substantial promise for applications in novel multifunctional devices. However, there are presently shortcomings for both the extensively studied bilayer epitaxial (2-2) and vertically architectured nanocomposite (1-3) film systems, restricting their applications. Here we design a novel growth strategy to fabricate an architectured nanocomposite heterostructure with magnetic quasiparticles (0) embedded in a ferroelectric film matrix (3) by alternately growing (2-2) and (1-3) layers within the film. The new heteroepitaxial films not only overcome the clamping effect from substrate, but also significantly suppress the leakage current paths through the ferromagnetic phase. We demonstrate, by focusing on switching characteristics of the piezoresponse, that the heterostructure shows magnetic field dependence of piezoelectricity due to the improved coupling enabled by good connectivity amongst the piezoelectric and magnetostrictive phases. This new architectured magnetoelectric heterostructures may open a new avenue for applications of magnetoelectric films in micro-devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms7680DOI Listing

Publication Analysis

Top Keywords

architectured nanocomposite
8
heterostructure magnetic
8
magnetoelectric
4
magnetoelectric quasi-0-3
4
quasi-0-3 nanocomposite
4
nanocomposite heterostructures
4
heterostructures magnetoelectric
4
magnetoelectric composite
4
composite thin
4
thin films
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!